scholarly journals Fermentative Volatile Production in Relation to Carbon Dioxide-induced Flesh Browning in `Fuji' Apple

HortScience ◽  
1998 ◽  
Vol 33 (7) ◽  
pp. 1231-1234 ◽  
Author(s):  
Richard K. Volz ◽  
William V. Biasi ◽  
Elizabeth J. Mitcham

Apple (Malux ×domestica Borkh., cv. Fuji) fruit were harvested from two California orchards 190 and 210 days after full bloom and from an additional three orchards at 190 days after full bloom. Fruit were immediately exposed to 20 or 50 kPa CO2 in air at 20 °C. Area of flesh browning and tissue ethanol, acetaldehyde, and ethyl acetate concentrations for individual fruit were determined immediately before exposure and after 3 and 7 days (20 kPa) or 1 and 3 days (50 kPa) exposure to CO2. Area of flesh browning and concentrations of all compounds increased with increasing duration of exposure to high CO2, were greater in response to 50 kPa than to 20 kPa CO2, and were greater for fruit harvested later in the season. For individual orchards and for individual fruit within most orchards, greater flesh browning was associated with higher acetaldehyde concentrations after 7 days exposure to 20 kPa CO2 or 3 days exposure to 50 kPa CO2. Similarly, flesh browning was positively correlated with ethanol concentrations after 7 days at 20 kPa CO2, but was not related to tissue ethyl acetate concentrations at either CO2 partial pressure. However, higher production of ethanol, acetaldehyde, or ethyl acetate relative to flesh browning occurred during exposure to 50 kPa than to 20 kPa CO2. This suggests that the relationship between accumulation of these compounds and CO2-induced flesh browning in `Fuji' is not simply causal.

2001 ◽  
Vol 126 (6) ◽  
pp. 771-777 ◽  
Author(s):  
Jun Song ◽  
Lihua Fan ◽  
Charles F. Forney ◽  
Michael A. Jordan

Volatile emissions and chlorophyll fluorescence were investigated as potential signals of heat injury for apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] fruit. `McIntosh', `Cortland', `Jonagold', and `Northern Spy' apples were exposed to 46 °C for 0, 4, 8, or 12 hours (heat treatments). Following treatments, fruit were kept at 20 °C and evaluated after 1, 2, 4, or 7 days. Heat treatments induced volatile production including ethanol and ethyl acetate. The 8 and 12 hours heat treatments increased ethanol and ethyl acetate production in all four cultivars by as much as 170- and 11-fold, respectively, 1 day after treatments. Heat treatments also reduced ethylene production and chlorophyll fluorescence. Heat for 12 hours caused serious flesh browning. Among the cultivars investigated, `Northern Spy' and `McIntosh' were most susceptible to heat stress based on the degree of flesh browning. Correlation coefficients of heat stress induced ethanol emission and chlorophyll fluorescence with flesh browning were 0.82 and -0.66, respectively. The nondestructive measurements of ethanol emission and chlorophyll fluorescence have potential to identify stressed fruit with reduced quality or compromised storage life.


2007 ◽  
Vol 132 (5) ◽  
pp. 713-719 ◽  
Author(s):  
Elena de Castro ◽  
Bill Biasi ◽  
Elizabeth Mitcham ◽  
Stuart Tustin ◽  
David Tanner ◽  
...  

To investigate a flesh browning (FB) disorder in Pink Lady apple [Malus ×sylvestris (L.) Mill. var. domestica (Borkh.) Mansf. cv. Cripps Pink], fruit were harvested from the same orchard each year from 2002 to 2005, at two or three maturity stages each year. Fruit were kept in air or controlled atmosphere (CA) storage (1.5- to 2-kPa O2 in combination with 1-, 3-, or 5-kPa CO2) at 0.5 °C. Additional subsets of fruit were exposed to 1 μL·L−1 1-methylcyclopropane (1-MCP) for 24 hours and dipped in 2200 μL·L−1 diphenylamine (DPA) for 5 min or held in air at 0.5 °C for 2 or 4 weeks before CA storage. Flesh browning was not seen in air-stored fruit but appeared in CA-stored fruit as soon as 2 months after harvest. Flesh browning incidence did not increase after longer storage times. Flesh browning increased with increasing CO2 concentration and decreasing O2 concentration in storage. 1-MCP did not significantly affect FB incidence, while delaying CA by 2 or 4 weeks reduced it. Diphenylamine eliminated FB incidence. When similar storage atmospheres were compared for the four seasons, FB incidence was high in 2002 and 2004 and low in 2003 and 2005. Concentrations of B, Ca, and Mg in apple flesh and seasonal field temperatures during the growing and harvest periods were related to FB incidence in 2002, 2003, and 2004 but not in 2005. The relationship of these pre- and postharvest factors to FB susceptibility are discussed.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2053
Author(s):  
Dragutin Nedeljkovic

An increased demand for energy in recent decades has caused an increase in the emissions of combustion products, among which carbon-dioxide is the most harmful. As carbon-dioxide induces negative environmental effects, like global warming and the greenhouse effect, a decrease of the carbon-dioxide emission has emerged as one of the most urgent tasks in engineering. In this work, the possibility for the application of the polymer-based, dense, mixed matrix membranes for flue gas treatment was tested. The task was to test a potential decrease in the permeability and selectivity of a mixed-matrix membrane in the presence of moisture and at elevated temperature. Membranes are based on two different poly(ethylene oxide)-based polymers filled with two different zeolite powders (ITR and IWS). An additive of detergent type was added to improve the contact properties between the zeolite and polymer matrix. The measurements were performed at three different temperatures (30, 60, and 90 °C) under wet conditions, with partial pressure of the water equal to the vapor pressure of the water at the given temperature. The permeability of carbon-dioxide, hydrogen, nitrogen, and oxygen was measured, and the selectivity of the carbon-dioxide versus other gases was determined. Obtained results have shown that an increase of temperature and partial pressure of the vapor slightly increase both the selectivity and permeability of the synthesized membranes. It was also shown that the addition of the zeolite powder increases the permeability of carbon-dioxide while maintaining the selectivity, compared to hydrogen, oxygen, and nitrogen.


Sign in / Sign up

Export Citation Format

Share Document