scholarly journals 298 Root Restriction and Fertilizer Effects on Young Peach Trees

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 494A-494 ◽  
Author(s):  
T. Daw ◽  
T.J. Tworkoski ◽  
D.M. Glenn

Shoot growth of peach trees can be managed by manipulating edaphic conditions such as root volume and soil fertility. In this experiment, 2-year-old peach trees (Prunus persica L. cv. Sentry on `Lovell' rootstock) were planted in pots with a split root design, so that half the roots were not treated and the other half received one of four treatments: root volume restricted with polypropylene nonwoven fabric (FAB), fertilizer alone (FER), FAB + FER, and untreated control (UTC). Total shoot growth and root growth were measured, and root growth in the split halves was compared. FER increased leaf number and weight by 48% and 60%, respectively, but not stem growth. Leaf nitrogen concentration and photosynthesis were greatest in FER treatment. FAB did not affect shoot weight or reduce total root weight or length, although roots did not grow past the fabric barrier. FER increased root weight and length (116% and 57%, respectively, compared to UTC) on the treated half but did not affect root growth on the untreated half. Greatest root growth occurred in the root half that received FAB + FER, particularly in the 5-cm soil segment proximal to the fabric (4.6 cm•cm-3 compared to 0.8 cm.cm-3 in UTC). Shoot length was greater in FAB + FER than FAB. Thus, fertilizer applied near fabric increased root growth and the combination of fertilizer and fabric may be used to regulate shoot growth. Specific root length (root length per gram dry weight) was highest in trees with no treatment, suggesting root acclimation to low nutrient soil conditions. Lower specific root length resulted in soils that were fertilized. The results indicate that nonwoven fabric restricts root growth in peach trees and reduces shoot elongation. The combined effect of fabric plus selected application of fertilizer may be used to regulate growth of peach trees.

1981 ◽  
Vol 32 (3) ◽  
pp. 453 ◽  
Author(s):  
A Pinkerton ◽  
JR Simpson

The root and shoot growth of four tropical and two temperate summer-growing legumes were assessed when plants were grown in deep profiles of an acidic soil modified by additions of calcium carbonate. Species tested over three harvests were Desmodium intortum, Glycine wightii, Stylosanthes humilis (Townsville stylo), Macvoptilium atvopuvpureum (Siratro), Trifolium repens and Medicago sativa (lucerne). There were large and more immediate effects on root growth, particularly on fine root length, than on shoot growth. The species differed in their root responses to lime, the tropical species in general being more tolerant of subsoil acidity than the temperate species. There were marked differences between species in their responses when expressed as the ratio of fine root length to total shoot weight. The ratio of root weight to shoot weight showed much less variation with lime rate, and it is suggested that the ratio of fine root length to shoot weight is the better indicator of tolerance to subsoil acidity. S. humilis showed little response to lime at any time, and was notable for its length of fine root. Siratro grew well at first but later there was little increase in shoot weight or in length of fine root, although tap root weight increased greatly. Roots of D. intorturn, T. repens and lucerne were slow to penetrate beyond 55 cm depth. At later harvests the root lengths of these species and of G. wightii were highly responsive to lime. Agronomic implications of the results are discussed.


1992 ◽  
Vol 43 (1) ◽  
pp. 19 ◽  
Author(s):  
KY Chan ◽  
JA Mead

Root growth and distribution of wheat under different tillage practices was studied in a 4-year-old tillage experimental site at Cowra, N.S.W. Tillage affected root density as well as distribution. Up to 98 days after sowing, root length density was lower (P < 0.05) in the 0.05-0.10 m layer of the direct-drilled soil than the conventionally cultivated soil. Poor root growth found in direct-drilled soils, which was significantly related to the poor shoot growth, was not caused by soil physical conditions, viz. higher bulk density and soil strength. Rather, biological factors were involved because fumigation completely eliminated the poor shoot growth and significantly increased root length density of the direct drilled soils. Compared to a compaction treatment, roots grown under direct drilling, in addition to having lower density, also had impaired function. Under conventional cultivation, significantly lower root length density was found in the surface soil layer (0-0.05 m) and maximum root length density was found in the 0-05-0.10 m layer. Fumigation did not change the root distribution pattern. This tillage-induced difference in root distribution reflected less favourable surface soil conditions as a result of cultivation, e.g. seedbed slumping, compared to the soil under direct drilling.


1991 ◽  
Vol 116 (2) ◽  
pp. 238-241 ◽  
Author(s):  
D.M. Glenn ◽  
W.V. Welker

We determined how differences in peach tree water use and shoot and root growth due to ground cover treatments are affected by tree response and soil conditions in the adjacent soil environment. Ground cover combinations of bare soil (BS), a killed K-31 tall fescue sod (KS), a living Poa trivialis sod (PT), and a living K-31 tall fescue sod (LS) were imposed on 50% of the soil surface in greenhouse studies. The ground cover on 50% of the soil surface influenced root and top growth of the peach trees [Prunus persica (L) Batsch], water use, and NO3-N levels in the opposing 50%, depending on the competitiveness of the cover crop (LS vs. PT and KS) and characteristics of the soil (BS vs. KS). Tree growth was allometrically related to root growth.


1994 ◽  
Vol 8 (4) ◽  
pp. 840-848 ◽  
Author(s):  
Chester L. Foy ◽  
Susan B. Harrison ◽  
Harold L. Witt

Field experiments were conducted at two locations in Virginia to evaluate the following herbicides: alachlor, diphenamid, diuron, metolachlor, napropamide, norflurazon, oryzalin, oxyfluorfen, paraquat, pendimethalin, and simazine. One experiment involved newly-transplanted apple trees; the others, three in apple and one in peach trees, involved one-year-old trees. Treatments were applied in the spring (mid-April to early-May). Control of annual weed species was excellent with several treatments. A broader spectrum of weeds was controlled in several instances when the preemergence herbicides were used in combinations. Perennial species, particularly broadleaf species and johnsongrass, were released when annual species were suppressed by the herbicides. A rye cover crop in nontreated plots suppressed the growth of weeds. New shoot growth of newly-transplanted apple trees was increased with 3 of 20 herbicide treatments and scion circumference was increased with 11 of 20 herbicide treatments compared to the nontreated control. Growth of one-year-old apple trees was not affected. Scion circumference of one-year-old peach trees was increased with 25 of 33 herbicide treatments.


1995 ◽  
Vol 120 (2) ◽  
pp. 211-216 ◽  
Author(s):  
J. Roger Harris ◽  
Nina L. Bassuk ◽  
Richard W. Zobel ◽  
Thomas H. Whitlow

The objectives of this study were to determine root and shoot growth periodicity for established Fraxinus pennsylvanica Marsh. (green ash), Quercus coccinea Muenchh. (scarlet oak), Corylus colurna L. (Turkish hazelnut), and Syringa reticulata (Blume) Hara `Ivory Silk' (tree lilac) trees and to evaluate three methods of root growth periodicity measurement. Two methods were evaluated using a rhizotron. One method measured the extension rate (RE) ofindividual roots, and the second method measured change in root length (RL) against an observation grid. A third method, using periodic counts of new roots present on minirhizotrons (MR), was also evaluated. RE showed the least variability among individual trees. Shoot growth began before or simultaneously with the beginning of root growth for all species with all root growth measurement methods. All species had concurrent shoot and root growth, and no distinct alternating growth patterns were evident when root growth was measured by RE. Alternating root and shoot growth was evident, however, when root growth was measured by RL and MR. RE measured extension rate of larger diameter lateral roots, RL measured increase in root length of all diameter lateral roots and MR measured new root count of all sizes of lateral and vertical roots. Root growth periodicity patterns differed with the measurement method and the types of roots measured.


1990 ◽  
Vol 17 (4) ◽  
pp. 451 ◽  
Author(s):  
FW Smith ◽  
WA Jackson ◽  
PJV Berg

Partitioning and net transfer of phosphorus between shoots and roots in the tropical forage legume Stylosanthes hamata cv. Verano during the development of phosphorus deficiency has been studied. Plants were stressed by either growing them in dilute flowing culture on continuously maintained external phosphorus concentrations that were inadequate for maximal growth, or by transferring plants of varying phosphorus status to phosphorus-free media. An external phosphorus concentration of 1 �M P was found to be just adequate for maximal growth of S. hamata. Phosphorus stress caused rapid and substantial increases in root weight percentage. It is proposed that this represents an important adaptive mechanism for maximising phosphorus uptake by S. hamata growing in phosphorus-deficient soils. Roots contained the minimum proportion of the plant's phosphorus content when root phosphorus concentrations were 8-10 �mol P g-1 root, and shoot phosphorus concentrations were 16-20 �mol P g-1 shoot. When tissue concentrations were less than these values, plants suffered from phosphorus stress and phosphorus was either preferentially retained by the roots or rapidly transferred from shoots to roots, reducing the growth rates of shoots, but permitting root growth to continue. Upon reducing the external phosphorus supply to plants whose root phosphorus concentrations exceeded 8 to 10 �mol P g-1 root, excess phosphorus was rapidly transferred from the root to the shoot to maintain shoot growth rates. The mobility of phospborus within the plant, and the apparent lack of any delay in transferring phosphorus from shoots to roots as phosphorus stress developed, represent another adaptive feature that is likely to be important to the successful growth of S. hamata in low phosphorus soils. When the phosphorus supply was limited, the plant's resources were directed toward maintaining root growth. Even extremely phosphorus deficient plants, in which shoot growth had ceased, maintained linear rates of root growth. These linear rates were related to the total phosphorus content of the plant. In the latter stages of phosphorus deprivation, linear rates of root growth were maintained by remobilisation of phosphorus from the older parts of the root system to sustain the phosphorus supply to the root meristems.


2014 ◽  
Vol 76 ◽  
pp. 197-202
Author(s):  
S.N. Nichols ◽  
J.R. Crush

Abstract Strategies to reduce the economic and environmental costs of phosphate (P) fertiliser use in mixed pastures through plant breeding are focussed on inefficiencies in the legume component. One approach is breeding within white clover for root systems with improved P acquisition properties. Selection for root length per unit root weight (specific root length, SRL) showed that higher SRL plants could retain more biomass in the above ground fraction with decreasing soil P, whereas plants with lower SRL diverted more biomass to roots. Back cross 1 (BC1) generation interspecific hybrids between white clover and a wild relative, Trifolium uniflorum L., may possess additional root traits influencing P acquisition. In glasshouse experiments, some T. repens × T. uniflorum hybrids, back-crossed to white clover, also exhibited higher shoot dry weight than their white clover cultivar parents at low nutrient supply levels and low to intermediate soil Olsen P. This, combined with low internal P concentrations, suggests some BC1 hybrids may be more tolerant of low soil P than white clover. Differences in both P acquisition ability and internal P use efficiency may contribute to the observed yield differences. There are good prospects for delivery of new-generation clover cultivars with improved phosphate use efficiency to New Zealand farmers. Keywords: phosphorus, white clover, Trifolium uniflorum, interspecific


2017 ◽  
Vol 15 (2) ◽  
pp. e0803 ◽  
Author(s):  
Isabel Abrisqueta ◽  
Wenceslao Conejero ◽  
Lidia López-Martínez ◽  
Juan Vera ◽  
M. Carmen Ruiz Sánchez

 The objectives of the paper were to study the pattern of root growth (measured by minirhizotrons) in relation to trunk, fruit and shoot growth and the effects of crop load on tree growth and yield in peach trees. Two crop load (commercial and low) treatments were applied in a mature early-maturing peach tree orchard growing in Mediterranean conditions. Root growth dynamics were measured using minirhizotrons during one growing season. Shoot, trunk and fruit growth were also measured. At harvest, all fruits were weighed, counted and sized. Roots grew throughout the year but at lower rates during the active fruit growth phase. Root growth was asynchronous with shoot growth, while root and trunk growth rates were highest after harvest, when the canopy was big enough to allocate the photo-assimilates to organs that would ensure the following season’s yield. Shoot and fruit growth was greater in the low crop load treatment and was accompanied by a non-significant increase in root growth. High level of fruit thinning decreased the current yield but the fruits were more marketable because of their greater size.


HortScience ◽  
1996 ◽  
Vol 31 (6) ◽  
pp. 941-943 ◽  
Author(s):  
A.M. Armitage ◽  
P.M. Gross

A copper hydroxide formulation (0%, 3.5%, 7%, 11% Cu) was applied to plug trays before sowing seeds of Impatiens ×hybrida L. `Accent Red', Pelargonium ×hortorum Bailey `Scarlet Elite', and Petunia ×hybrida Hort.Vilm.-Andr. `Ultra White' to investigate the influence of the formulations on ease of transplant, root growth, and shoot growth. These factors also were investigated in Cu-treated seedling plugs held past optimal transplanting stage. Root spiraling and seedling height at transplant were reduced for all taxa grown in Cu-treated trays, regardless of concentration, compared to seedlings from nontreated trays. Root weight and shoot weight responses to Cu treatments at transplant and at flowering varied among taxa. Mature heights of all taxa were unaffected by Cu treatment; however, flowering date was delayed for impatiens and geraniums transplanted at optimal time from Cu-treated trays. In general, petunias displayed little response to Cu treatment. Root spiraling was reduced and plugs were removed more easily from Cu-treated than from control trays stored for 2 weeks in the greenhouse, but flowering time was delayed for 12 days for impatiens and petunias and 21 days for geraniums, regardless of Cu concentration.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1064e-1064 ◽  
Author(s):  
Edward F. Gilman ◽  
Michael E. Kane

Shoot and root growth were measured on Chinese juniper (Juniperus chinensis L.) Var. `Torulosa', `Sylvestris', `Pfitzeriana' and `Hetzii' 1, 2 and 3 years after planting into a simulated landscape from 10-liter black plastic containers. Mean diameter of the root system increased quadratically averaging 1, 2 m/year; whereas, mean branch spread increased at 0, 33 m/year, Three years after planting, root spread was 2, 75 times branch spread and roots covered an area 5.5 times that covered by the branches. Percentage of total root length located within the dripline of the plants remained fairly constant (71-77%) during the first 3 years following planting. Root length density per unit area increased over time but decreased with distance from the trunk. In the first 2 years after planting shoot weight increased faster than root `weight. However, during the third year after planting, the root system increased in mass and size at a faster rate than the shoots. Root length was correlated with root weight within root-diameter classes, Root spread and root area were correlated with trunk area, branch spread and crown area.


Sign in / Sign up

Export Citation Format

Share Document