scholarly journals 647 Effects of Nitrogen Application Rates on Leachate Nitrogen Concentrations and Leatherleaf Fern Establishment

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 509B-509
Author(s):  
Robert H. Stamps

One of the most difficult times to balance crop nitrogen (N) requirements with concerns about nitrate-N leaching occurs during crop establishment, when root systems are poorly developed and not widely distributed in the growing medium. This dilemma can be exacerbated when producing a slow-growing plant such as leatherleaf fern (Rumohra adiantiformis [Forst.] Ching) on sandy soils in shadehouses in areas with significant rainfall. Rhizomes were planted in 36 drainage lysimeters containing Tavares fine sand located in a shadehouse. Nitrogen fertilizer was applied at nine rates using liquid and/or controlled-release fertilizer. Nitrogen application rates were varied as the rhizomes became established and spread into unplanted areas of the lysimeters. Irrigation and rainfall were monitored and the amount of water not lost to evapotranspiration was determined. Nitrogen (ammoniacal, nitrate/nitrite, total Kjeldahl) concentrations in leachate collected below the rootzone were determined. Stipe sap nitrate and frond total Kjeldahl nitrogen (TKN) were determined to try to develop a production monitoring technique. Initially, only leachate samples from controlled-release fertilizer plots treated at 21 and 42 kg of N/ha per year and liquid fertilizer at 28 kg of N/ha per year were consistently below the maximum contamination level (MCL) of 10 mg·L–1. As the fern became established, leachate nitrate/nitrite-N concentrations from higher N application rate treatments also remained below the MCL. Leachate N concentrations decreased as rainfall increased. Fern growth increased with increasing N application rate. Stipe sap nitrate-N and frond TKN concentrations were not well-correlated during establishment.

2012 ◽  
Vol 92 (3) ◽  
pp. 493-499 ◽  
Author(s):  
M.J. Helmers ◽  
X. Zhou ◽  
J.L. Baker ◽  
S.W. Melvin ◽  
D.W. Lemke

Helmers, M. J., Zhou, X., Baker, J. L., Melvin, S. W. and Lemke, D. W. 2012. Nitrogen loss on tile-drained Mollisols as affected by nitrogen application rate under continuous corn and corn-soybean rotation systems. Can. J. Soil Sci. 92: 493–499. Nitrate-nitrogen (NO3-N) loss from production agricultural systems through subsurface drainage networks is of local and regional concern throughout the Midwestern United States. The increased corn acreage and the practice of growing continuous corn instead of a corn-soybean rotation system due to the increasing demand for food and energy have raised questions about the environmental impacts of this shift in cropping systems. The objective of this 4-yr (1990–1993) study was to evaluate the effect of nitrogen (N) application rate (0–168 kg N ha−1 for corn following soybean and 0–224 kg N ha−1 for corn following corn) on NO3-N concentration, NO3-N losses, and crop yields in continuous corn and corn-soybean production systems on tile-drained Mollisols in north central Iowa. The results show that NO3-N concentrations from the continuous corn system were similar to NO3-N concentrations from the corn-soybean rotation at equivalent N application rates.When extra N fertilizer (approximately 56 kg N ha−1) was applied to continuous corn than the corn-soybean rotation, this resulted in 14–36% greater NO3-N concentrations in subsurface drainage from the continuous corn system. While corn yield increased as N application rate increased, corn yields at the recommended N application rates (112–168 kg N ha−1) in the corn-soybean rotation were up to 3145 kg ha−1 greater than corn yields at the recommended application rates (168–224 kg N ha−1) in the continuous corn system. The corn-soybean rotation with recommended N application rates (168–224 kg N ha−1) appeared to be beneficial environmentally and economically.


Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 386 ◽  
Author(s):  
Haiyong Xia ◽  
Weilin Kong ◽  
Lan Wang ◽  
Yanhui Xue ◽  
Wenlong Liu ◽  
...  

Zinc (Zn) deficiency is a global nutritional problem that is reduced through agronomic biofortification. In the current study, the effects of foliar spraying of exogenous ZnSO4·7H2O (0.2% in Quzhou and 0.3% in Licheng, w/v) and/or sucrose (10.0%, w/v) on maize (Zea mays L.) agronomic traits; concentrations of Zn, iron (Fe), calcium (Ca), total phosphorus (P), phytic acid (PA) P, carbon (C), and nitrogen (N); C/N ratios; and Zn and Fe bioavailability (as evaluated by molar ratios of PA/Zn, PA × Ca/Zn, PA/Fe and PA × Ca/Fe) in maize grains were studied under field conditions for two years at two experimental locations. The results confirmed that there were no significant differences in maize agronomic traits following the various foliar treatments. Compared with the control treatment of foliar spraying with deionized water, foliar applications of Zn alone or combined with sucrose significantly increased maize grain Zn concentrations by 29.2–58.3% in Quzhou (from 18.4–19.9 to 25.2–29.6 mg/kg) and by 39.8–47.8% in Licheng (from 24.9 to 34.8–36.8 mg/kg), as well as its bioavailability. No significant differences were found between the foliar spraying of deionized water and sucrose, and between Zn-only and “sucrose + Zn” at each N application rate and across different N application rates and experimental sites. Similar results were observed for maize grain Fe concentrations and bioavailability, but the Fe concentration increased to a smaller extent than Zn. Foliar Zn spraying alone or with sucrose increased maize grain Fe concentrations by 4.7–28.4% in Quzhou (from 13.4–17.1 to 15.2–18.5 mg/kg) and by 15.4–25.0% in Licheng (from 24.0 to 27.7–30.0 mg/kg). Iron concentrations were significantly and positively correlated with Zn at each N application rate and across different N application rates and experimental locations, indicating that foliar Zn spraying facilitated the transport of endogenous Fe to maize grains. Therefore, foliar Zn spraying increased the Zn concentration and bioavailability in maize grains irrespective of foliar sucrose supply while also improving Fe concentrations and bioavailability to some extent. This is a promising agricultural practice for simultaneous Zn and Fe biofortification in maize grains, i.e., “killing two birds with one stone”.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 582f-583
Author(s):  
Robert H. Stamps

Established leatherleaf fern was grown for one year in a glasshouse in intact soil columns (Astatula fine sand, 21 × 61 cm) contained in drainage lysimeters. Columns were fertilized at rates of 224, 448, or 672 kg N ha-1 yr-1 using controlled-release (CR) fertilizer, either 360-day (360CR) or 180-day (180CR) term, or weekly applications of liquid (L) fertilizer. Water use, yield (number of harvestable fronds) and average frond weight increased linearly with increasing fertilization rate and more fronds were produced using L than CR fertilizers. Frond color measurements paralleled yield results. During cool weather when vase life is greatest, fronds from L fertilizer lysimeters lasted longer than fronds from CR treated plots. During warmer weather, treatments had no effect on vase life. Nitrate nitrogen (NO3-N) leaching increased with fertilization rate and exceeded 10 ppm in leachate from the L and 180CR treatments at all application rates. NO3-N in leachate from 360CR lysimeters never exceeded 8 ppm at any application rate.


HortScience ◽  
2020 ◽  
Vol 55 (12) ◽  
pp. 1956-1962
Author(s):  
Ji-Jhong Chen ◽  
Heidi Kratsch ◽  
Jeanette Norton ◽  
Youping Sun ◽  
Larry Rupp

Shepherdia ×utahensis ‘Torrey’ (‘Torrey’ hybrid buffaloberry) is an actinorhizal plant that can fix atmospheric nitrogen (N2) in symbiotic root nodules with Frankia. Actinorhizal plants with N2-fixing capacity are valuable in sustainable nursery production and urban landscape use. However, whether nodule formation occurs in S. ×utahensis ‘Torrey’ and its interaction with nitrogen (N) fertilization remain largely unknown. Increased mineral N in fertilizer or nutrient solution might inhibit nodulation and lead to excessive N leaching. In this study, S. ×utahensis ‘Torrey’ plants inoculated with soils containing Frankia were irrigated with an N-free nutrient solution with or without added 2 mm ammonium nitrate (NH4NO3) or with 0.0 to 8.4 g·L−1 controlled-release fertilizer (CRF; 15N–3.9P–10K) to study nodulation and plant morphological and physiological responses. The performance of inoculated plants treated with various amounts of CRF was compared with uninoculated plants treated with the manufacturer’s prescribed rate. Plant growth, gas exchange parameters, and shoot N content increased quadratically or linearly along with increasing CRF application rates (all P < 0.01). No parameters increased significantly at CRF doses greater than 2.1 g·L−1. Furthermore, the number of nodules per plant decreased quadratically (P = 0.0001) with increasing CRF application rates and nodule formation were completely inhibited at 2.9 g·L−1 CRF or by NH4NO3 at 2 mm. According to our results, nodulation of S. ×utahensis ‘Torrey’ was sensitive to N in the nutrient solution or in increasing CRF levels. Furthermore, plant growth, number of shoots, leaf area, leaf dry weight, stem dry weight, root dry weight, and N content of shoots of inoculated S. ×utahensis ‘Torrey’ plants treated with 2.1 g·L−1 CRF were similar to those of uninoculated plants treated with the manufacturer’s prescribed rate. Our results show that S. ×utahensis ‘Torrey’ plants inoculated with soil containing Frankia need less CRF than the prescribed rate to maintain plant quality, promote nodulation for N2 fixation, and reduce N leaching.


2019 ◽  
Vol 70 (4) ◽  
pp. 373 ◽  
Author(s):  
Lihua Huang ◽  
Zhengwei Liang ◽  
Donald L. Suarez ◽  
Zhichun Wang ◽  
Mingming Wang

The effect of nitrogen (N) application on seed yields and yield components in Leymus chinensis (Trin.) Tzvel., a perennial rhizomatous grass, was measured in a field experiment with two saline-sodic soils at Da’an Sodic Land Experiment Station during 2010–11. Two grassland field sites were classified as moderately saline–sodic (MSSL) and severely saline–sodic (SSSL). Application rates of N at each site were 0, 30, 60, 90, 120, 150, 180 and 210 kg ha–1. Application of N significantly improved seed yield mainly through increased spike number (R2 = 0.96, P ≤ 0.001). Compared with nil N, seed yield increased 7.4–10.9 times with N application of 150 kg ha–1 at MSSL, and 5.3–7.5 times with N application of 120 kg ha–1 at SSSL. However, absolute increases at SSSL were relatively small. Some significant differences (P ≤ 0.01) in seed yield occurred between 2010 and 2011 with different N application rates in the same soil, and between MSSL and SSSL in the same year. Increasing N application rate significantly decreased N physiological efficiency (NPE) but increased N apparent-recovery fraction (NRF) and N partial-factor productivity (NPP) at both sites. Seed yield and NPP indicated that the optimal N application rates to increase yield were 150 kg ha–1 at MSSL and 120 kg ha–1 at SSSL. High soil pH was the major factor adversely impacting seed yield, and pH and soil salinity were major factors negative affecting NPE, NRF and NPP as well as decreasing the positive effect of N application. Nitrogen application is a practical and effective method to increase seed yield of L. chinensis in saline-sodic grasslands of Northeast China, particularly when soil pH and salinity are not limiting.


1976 ◽  
Vol 86 (2) ◽  
pp. 335-342 ◽  
Author(s):  
R. Marsh ◽  
F. J. Gordon ◽  
J. C. Murdoch ◽  
W. E. G. Stevenson

SummaryThe effect of season of harvest and previous seasonal applications of fertilizer N on the response of perennial ryegrass/white clover swards to pre-cut applications of fertilizer N was studied in three consecutive years on different sites. Herbage D.M. yield responded in a curvilinear manner to increased pre-cut N application rates. There was a tendency in all experiments for the marginal response of herbage D.M. to increased pre-cut N application rates to decrease as previous seasonal fertilizer N application rates increased. Although the effect of season of harvest on the response of herbage D.M. to pre-cut N application rates varied with site/years, it was concluded that the marginal response of herbage D.M. to pre-cut N application rate varies little throughout the greater part of the growing season. The exceptions to this are the very early and late harvests and swards that receive low supplies of N from the sward/soil complex. The results are discussed in relation to other published data and to their possible use in the control of the seasonal pattern and total seasonal supply of herbage D.M. for rotational grazing management systems.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 171
Author(s):  
Tao Sun ◽  
Xin Yang ◽  
Xiaoli Tan ◽  
Kefeng Han ◽  
Sheng Tang ◽  
...  

Previous studies have revealed that the japonica/indica hybrid rice has a higher yield potential, biomass production, and nitrogen (N) accumulation than japonica rice in China, however, at a single N application rate. It remains unclear whether it also occurs at a higher or lower N application rate under the same field condition. To investigate the effects of nitrogen application rates on grain yield, N uptake, dry matter accumulation, and agronomic N use efficiency, field experiments were conducted in Jinhua City, Zhejiang Province during three consecutive growth seasons in 2016, 2017, and 2018. Two japonica/indica hybrid varieties (Yongyou 12 and Yongyou 538) and two japonica varieties (Xiushui 134 and Jia 58) were exposed to five N application rates (0, 150, 225, 300, and 375 kg ha−1). The results showed that grain yields of all the varieties increased with increasing nitrogen application rates, except for Jia 58 whose optimum nitrogen level was 225 kg ha−1, because no significant difference was observed between N225 and N300. Across the four rice varieties, N uptake increased significantly with increased N-fertilizer rates at all the growth stages (p < 0.05). Across the three planting years, the average grain yield of japonica/indica hybrid rice was higher than that of japonica rice by 75.6% at N0, 57.2% at N150, 41.1% at N225, 38.3% at N300, and 45.8% at N375. We also found that as compared with japonica rice, the japonica/indica hybrid rice had more grain yield, higher dry matter, and higher N uptake at all growth stages, regardless of the N application rate.


2001 ◽  
Vol 1 ◽  
pp. 682-690 ◽  
Author(s):  
J.L. Hatfield ◽  
J.H. Prueger

Nitrogen (N) loss from agricultural systems raises concerns about the potential impact of farming practices on environmental quality. N is a critical input to agricultural production. However, there is little understanding of the interactions among crop water use, N application rates, and soil types. This study was designed to quantify these interactions in corn (Zea mays L.) grown in production-size fields in central Iowa on the Clarion-Nicollet-Webster soil association. Seasonal water use varied by soil type and N application rate. Yield varied with N application rate, with the highest average yield obtained at 100 kg ha-1. N use efficiency (NUE) decreased with increasing N application rates, having values around 50%. Water use efficiency (WUE) decreased as N fertilizer rates increased. Analysis of plant growth patterns showed that in the low organic matter soils (lower water-holding capacities), potential yield was not achieved because of water deficits during the grain-filling period. Using precipitation data coupled with daily water use throughout the season, lower organic matter soils showed these soils began to drain earlier in the spring and continued to drain more water throughout the season. The low NUE in these soils together with increased drainage lead to greater N loss from these soils. Improved management decisions have shown that it is possible to couple water use patterns with N application to increase both WUE and NUE.


HortScience ◽  
2017 ◽  
Vol 52 (1) ◽  
pp. 167-173 ◽  
Author(s):  
Mary Jane Clark ◽  
Youbin Zheng

The objectives of the current study were to 1) determine the best topdressed controlled-release fertilizer (CRF) application rates for quality and growth of two nursery crops under temperate climate outdoor nursery production conditions in the Niagara region, Ontario, Canada, and 2) evaluate the nutrient status of the growing substrate following topdressing of two CRF types during the growing season. Fall-transplanted Goldmound spirea (Spiraea ×bumalda ‘Goldmound’) and Wine & Roses® weigela [Weigela florida (Bunge) A. DC. ‘Alexandra’] were grown in 2-gal (7.56 L) containers and topdressed on 7 May 2015 with Osmocote Plus 15N–3.9P–9.9K, 5–6 month CRF or Plantacote 14N–3.9P–12.5K, 6 month Homogeneous NPK with Micros. CRF was applied at rates of 1.5, 3.0, 4.5, 6.0, 7.5, and 9.0 g nitrogen (N)/pot for both species. The best plants at the end of the growing season (i.e., 23 Sept. 2015) were spirea at 3.0–4.5 and 3.0–6.0 g N/pot, and weigela at 3.0–4.5 and 6.0 g N/pot, with Osmocote and Plantacote, respectively. At CRF rates above these rates, the majority of plants showed no increase in growth or quality attributes. All weigela plants, despite CRF application rate, showed K deficiency symptoms during the study. Using marketable-size criteria and plant growth data over time, estimates of production timing are presented for fall-transplanted, spring-topdressed weigela and spirea. These estimates may assist growers in choosing CRF application rates to meet time-sensitive production goals. Early in the growing season, NO3-N and P concentrations in the growing substrate were highest at CRF rates ≥4.5 and ≥6.0 g N/pot, respectively, and P continued to be high in August and September at 9.0 g N/pot. NH3-N and K concentrations at all CRF application rates were greater early in the growing season and decreased over time. At high CRF rates toward the end of the growing season, concentrations of NO3-N, NH3-N, and P once again increased. Considering crop-specific CRF application rates and understanding changes in growing substrate nutrient status during the growing season may help nursery growers prevent negative environmental impacts from over-fertilizing.


2016 ◽  
Vol 6 (1) ◽  
pp. 883-887
Author(s):  
Luji Bo ◽  
Yingpeng Zhang ◽  
Yan Li ◽  
Jiafa Luo ◽  
Ming Sun ◽  
...  

An experiment was conducted on garlic (Allium sativum L.) to investigate the effects of nitrogen management on yield, economic benefit and the soil apparent nutrient balance, in the region of Laiwu town in Shandong province, China. The treatments included control (no N fertilizer), urea at 300 kg/ha, urea at 240 kg/ha, combined urea and commercial organic fertilizers at 120 kg N /ha each, and controlled-release nitrogen fertilizer at 192 kg N /ha. Results showed no significant difference both for garlic bulb yield and economic benefits between the urea treatments at different N application rates. The effect of the combined use of urea and organic fertilizer was similar to that of the urea application at the same N application rate. However, garlic bulb yields in the treatment of controlled-release nitrogen fertilizer were significantly higher than in the other fertilizer treatments, even the N application rate was lower. The net income from garlic in the treatment of controlled release fertilizer was also significantly higher than those in the other treatments. There was N surplus after the garlic growth season when urea was applied at 300 kg/ha, while there was N, P and K deficit when the controlled-release N fertilizer at 192 kg/ha was used to produce more garlic. It is suggested that use of controlled release N fertilizer combined with a supplement of other nutrients would be a sustainable strategy for fertilizer management in garlic production.


Sign in / Sign up

Export Citation Format

Share Document