scholarly journals Comparison of Agronomic Performance between Japonica/Indica Hybrid and Japonica Cultivars of Rice Based on Different Nitrogen Rates

Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 171
Author(s):  
Tao Sun ◽  
Xin Yang ◽  
Xiaoli Tan ◽  
Kefeng Han ◽  
Sheng Tang ◽  
...  

Previous studies have revealed that the japonica/indica hybrid rice has a higher yield potential, biomass production, and nitrogen (N) accumulation than japonica rice in China, however, at a single N application rate. It remains unclear whether it also occurs at a higher or lower N application rate under the same field condition. To investigate the effects of nitrogen application rates on grain yield, N uptake, dry matter accumulation, and agronomic N use efficiency, field experiments were conducted in Jinhua City, Zhejiang Province during three consecutive growth seasons in 2016, 2017, and 2018. Two japonica/indica hybrid varieties (Yongyou 12 and Yongyou 538) and two japonica varieties (Xiushui 134 and Jia 58) were exposed to five N application rates (0, 150, 225, 300, and 375 kg ha−1). The results showed that grain yields of all the varieties increased with increasing nitrogen application rates, except for Jia 58 whose optimum nitrogen level was 225 kg ha−1, because no significant difference was observed between N225 and N300. Across the four rice varieties, N uptake increased significantly with increased N-fertilizer rates at all the growth stages (p < 0.05). Across the three planting years, the average grain yield of japonica/indica hybrid rice was higher than that of japonica rice by 75.6% at N0, 57.2% at N150, 41.1% at N225, 38.3% at N300, and 45.8% at N375. We also found that as compared with japonica rice, the japonica/indica hybrid rice had more grain yield, higher dry matter, and higher N uptake at all growth stages, regardless of the N application rate.

1998 ◽  
Vol 49 (4) ◽  
pp. 695 ◽  
Author(s):  
S. Boonchoo ◽  
S. Fukai ◽  
Suzan E. Hetherington

Two types of experiments were conducted with the malting barley cv. Grimmett to examine how assimilate and nitrogen (N) availability at different growth stages determined yield and grain protein concentration (GPC) in south-east Queensland. In one series of experiments, plants were sown in April, June, and August so that they would experience different growing conditions, and responses to N application rate were examined. Another experiment examined response of growth, yield, and GPC to variation of assimilate production pre and post anthesis, caused by the canopy manipulation treatments of opening, closure, and 50% shading at 3 different growth stages. Without N application all 3 sowings produced similar yields (1·9-2·3 t/ha), but when N was applied, yield was higher and responded more to applied N in the June sowing than in the other sowings.The different responses of grain yield to N application rate among the 3 sowing dates were not due to differences in N uptake but to the efficiency of N use; with favourable temperatures throughout crop growth, the crop sown in June utilised N most eciently to develop a large number of grainsand to produce sufficient as similates to fill these grains. When yield had a positive response to low N application rates, then there was generally no response of GPC, whereas when there was no response of grain yield to further rate of N application then GPC increased. The results of the second experiment show that N uptake depended on plant N demand at early stages of growth when N was still available in the soil, but total N content of tops at maturity was similar among canopy manipulation treatments. Canopy opening at any stage of growth tended to increase tiller number, leaf area index, and above-ground dry matter, but the effect was greater attillering stage which produced the highest yield because of the greatest number of heads. Shading reduced yield at all stages, but particularly at pre-anthesis. Shading and canopy closure during grain filling reduced grain yield, but with similar N uptake these treatments significantly increased GPC .These results indicate that GPC depends on both assimilate and N availability to grain, and GPC can increase sharply when grain yield is reduced with low assimilate availability as a result of adverse growing conditions. Responses of grain yield to applied N depended on environmental conditions, particularly the patterns of air temperature during growth, and the crop utilised N more efficiently to produce higher yield when it was not exposed to extreme temperatures during the latter stages of growth.


1980 ◽  
Vol 28 (4) ◽  
pp. 243-251
Author(s):  
L. Sibma ◽  
T. Alberda

In 3 trials with perennial ryegrass given N in the range 0-1000 kg/ha and from 3 to 28 times/yr, DM production, N uptake and NO3 content in relation to N application rates and cutting frequencies of herbage were compared. Higher N application rates increased the herbage yield more at longer growing periods than at higher cutting frequencies. N uptake was positively affected by the application rate and not or only slightly by the cutting frequency. Consistent with this, appreciably high N conc. (max. 5.4%) were found on av. in the herbage at high fertilizer N rates and frequent cutting than at lower rates and less frequent cutting (1.6%). NO3 content increased during the growing season, especially as the N application rate was higher and the growing periods longer. (Abstract retrieved from CAB Abstracts by CABI’s permission)


1974 ◽  
Vol 14 (66) ◽  
pp. 38 ◽  
Author(s):  
DL Lloyd

Makarikari grass (Panicum coloratum var. makarikariense) cvs, 04634 and Bambatsi were fertilized with eight rates of urea (0-900 kg N ha-1 yr-1) under irrigation on a red earth at Toowoomba, and cut either 8-weekly or at full flower. Dry matter (D.M.) production increased linearly with N applications up to 450 kg ha-1 for both cultivars. Due to differences in growth rhythm between cultivars, 04634 produced higher total yields cut at full flower (29500 kg ha-1 yr-1) than at 8-weekly intervals (23100 kg ha-1 yr-1), whereas Bambatsi yielded similarly (23000 kg ha-1 yr-1) for the two cutting frequencies. Lower tissue N concentrations occurred at full flower than in 8-week growth for both cultivars (Q4634 -0.85 per cent to 1.08 per cent; Bambatsi-1.39 per cent to 1.55 per cent at 450 kg N ha-1). The N uptake by 04634 was the same for both cutting frequencies, but lower in Bambatsi cut at full flower. The association between N application rate, tissue N concentration and N uptake is outlined. The maximum efficiencies of both N use for D.M. production and per cent N recovery for 04634 and Bambatsi (55 and 35 kg D.M. per kg N applied; 40 and 60 per cent N recovery, respectively) were comparable with published values for other species. Increasing N application rates decreased the efficiency of D.M. production of both cultivars, decreased the per cent N recovery of Bambatsi, but had no effect on the per cent N recovery of 04634. In an extension of the Bambatsi study, the intrusion of spring ephemerals, mainly Bromus unioloides, did not reduce total D.M. production greatly and distributed it better through the growing season. Productivity of Bambatsi during mid-summer was not affected by prior weed competition in the spring.


Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 386 ◽  
Author(s):  
Haiyong Xia ◽  
Weilin Kong ◽  
Lan Wang ◽  
Yanhui Xue ◽  
Wenlong Liu ◽  
...  

Zinc (Zn) deficiency is a global nutritional problem that is reduced through agronomic biofortification. In the current study, the effects of foliar spraying of exogenous ZnSO4·7H2O (0.2% in Quzhou and 0.3% in Licheng, w/v) and/or sucrose (10.0%, w/v) on maize (Zea mays L.) agronomic traits; concentrations of Zn, iron (Fe), calcium (Ca), total phosphorus (P), phytic acid (PA) P, carbon (C), and nitrogen (N); C/N ratios; and Zn and Fe bioavailability (as evaluated by molar ratios of PA/Zn, PA × Ca/Zn, PA/Fe and PA × Ca/Fe) in maize grains were studied under field conditions for two years at two experimental locations. The results confirmed that there were no significant differences in maize agronomic traits following the various foliar treatments. Compared with the control treatment of foliar spraying with deionized water, foliar applications of Zn alone or combined with sucrose significantly increased maize grain Zn concentrations by 29.2–58.3% in Quzhou (from 18.4–19.9 to 25.2–29.6 mg/kg) and by 39.8–47.8% in Licheng (from 24.9 to 34.8–36.8 mg/kg), as well as its bioavailability. No significant differences were found between the foliar spraying of deionized water and sucrose, and between Zn-only and “sucrose + Zn” at each N application rate and across different N application rates and experimental sites. Similar results were observed for maize grain Fe concentrations and bioavailability, but the Fe concentration increased to a smaller extent than Zn. Foliar Zn spraying alone or with sucrose increased maize grain Fe concentrations by 4.7–28.4% in Quzhou (from 13.4–17.1 to 15.2–18.5 mg/kg) and by 15.4–25.0% in Licheng (from 24.0 to 27.7–30.0 mg/kg). Iron concentrations were significantly and positively correlated with Zn at each N application rate and across different N application rates and experimental locations, indicating that foliar Zn spraying facilitated the transport of endogenous Fe to maize grains. Therefore, foliar Zn spraying increased the Zn concentration and bioavailability in maize grains irrespective of foliar sucrose supply while also improving Fe concentrations and bioavailability to some extent. This is a promising agricultural practice for simultaneous Zn and Fe biofortification in maize grains, i.e., “killing two birds with one stone”.


Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 572 ◽  
Author(s):  
Weijin Wang ◽  
Glen Park ◽  
Steven Reeves ◽  
Megan Zahmel ◽  
Marijke Heenan ◽  
...  

Nitrous oxide (N2O) emissions from sugarcane cropped soils are usually high compared with those from other arable lands. Nitrogen-efficient management strategies are needed to mitigate N2O emissions from sugarcane farming whilst maintaining productivity and profitability. A year-long field experiment was conducted in wet tropical Australia to assess the efficacy of polymer-coated urea (PCU) and nitrification inhibitor (3,4-dimethylpyrazole phosphate)-coated urea (NICU). Emissions of N2O were measured using manual and automatic gas sampling chambers in combination. The nitrogen (N) release from PCU continued for >5–6 months, and lower soil NO3– contents were recorded for≥3 months in the NICU treatments compared with the conventional urea treatments. The annual cumulative N2O emissions were high, amounting to 11.4–18.2kg N2O-Nha–1. In contrast to findings in most other cropping systems, there were no significant differences in annual N2O emissions between treatments with different urea formulations and application rates (0, 100 and 140kgNha–1). Daily variation in N2O emissions at this site was driven predominantly by rainfall. Urea formulations did not significantly affect sugarcane or sugar yield at the same N application rate. Decreasing fertiliser application rate from the recommended 140kgNha–1 to 100kgNha–1 led to a decrease in sugar yield by 1.3tha–1 and 2.2tha–1 for the conventional urea and PCU treatments, respectively, but no yield loss occurred for the NICU treatment. Crop N uptake also declined at the reduced N application rate with conventional urea, but not with the PCU and NICU. These results demonstrated that substituting NICU for conventional urea may substantially decrease fertiliser N application from the normal recommended rates whilst causing no yield loss or N deficiency to the crop. Further studies are required to investigate the optimal integrated fertiliser management strategies for sugarcane production, particularly choice of products and application time and rates, in relation to site and seasonal conditions.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 509B-509
Author(s):  
Robert H. Stamps

One of the most difficult times to balance crop nitrogen (N) requirements with concerns about nitrate-N leaching occurs during crop establishment, when root systems are poorly developed and not widely distributed in the growing medium. This dilemma can be exacerbated when producing a slow-growing plant such as leatherleaf fern (Rumohra adiantiformis [Forst.] Ching) on sandy soils in shadehouses in areas with significant rainfall. Rhizomes were planted in 36 drainage lysimeters containing Tavares fine sand located in a shadehouse. Nitrogen fertilizer was applied at nine rates using liquid and/or controlled-release fertilizer. Nitrogen application rates were varied as the rhizomes became established and spread into unplanted areas of the lysimeters. Irrigation and rainfall were monitored and the amount of water not lost to evapotranspiration was determined. Nitrogen (ammoniacal, nitrate/nitrite, total Kjeldahl) concentrations in leachate collected below the rootzone were determined. Stipe sap nitrate and frond total Kjeldahl nitrogen (TKN) were determined to try to develop a production monitoring technique. Initially, only leachate samples from controlled-release fertilizer plots treated at 21 and 42 kg of N/ha per year and liquid fertilizer at 28 kg of N/ha per year were consistently below the maximum contamination level (MCL) of 10 mg·L–1. As the fern became established, leachate nitrate/nitrite-N concentrations from higher N application rate treatments also remained below the MCL. Leachate N concentrations decreased as rainfall increased. Fern growth increased with increasing N application rate. Stipe sap nitrate-N and frond TKN concentrations were not well-correlated during establishment.


1976 ◽  
Vol 86 (2) ◽  
pp. 335-342 ◽  
Author(s):  
R. Marsh ◽  
F. J. Gordon ◽  
J. C. Murdoch ◽  
W. E. G. Stevenson

SummaryThe effect of season of harvest and previous seasonal applications of fertilizer N on the response of perennial ryegrass/white clover swards to pre-cut applications of fertilizer N was studied in three consecutive years on different sites. Herbage D.M. yield responded in a curvilinear manner to increased pre-cut N application rates. There was a tendency in all experiments for the marginal response of herbage D.M. to increased pre-cut N application rates to decrease as previous seasonal fertilizer N application rates increased. Although the effect of season of harvest on the response of herbage D.M. to pre-cut N application rates varied with site/years, it was concluded that the marginal response of herbage D.M. to pre-cut N application rate varies little throughout the greater part of the growing season. The exceptions to this are the very early and late harvests and swards that receive low supplies of N from the sward/soil complex. The results are discussed in relation to other published data and to their possible use in the control of the seasonal pattern and total seasonal supply of herbage D.M. for rotational grazing management systems.


2012 ◽  
Vol 92 (3) ◽  
pp. 493-499 ◽  
Author(s):  
M.J. Helmers ◽  
X. Zhou ◽  
J.L. Baker ◽  
S.W. Melvin ◽  
D.W. Lemke

Helmers, M. J., Zhou, X., Baker, J. L., Melvin, S. W. and Lemke, D. W. 2012. Nitrogen loss on tile-drained Mollisols as affected by nitrogen application rate under continuous corn and corn-soybean rotation systems. Can. J. Soil Sci. 92: 493–499. Nitrate-nitrogen (NO3-N) loss from production agricultural systems through subsurface drainage networks is of local and regional concern throughout the Midwestern United States. The increased corn acreage and the practice of growing continuous corn instead of a corn-soybean rotation system due to the increasing demand for food and energy have raised questions about the environmental impacts of this shift in cropping systems. The objective of this 4-yr (1990–1993) study was to evaluate the effect of nitrogen (N) application rate (0–168 kg N ha−1 for corn following soybean and 0–224 kg N ha−1 for corn following corn) on NO3-N concentration, NO3-N losses, and crop yields in continuous corn and corn-soybean production systems on tile-drained Mollisols in north central Iowa. The results show that NO3-N concentrations from the continuous corn system were similar to NO3-N concentrations from the corn-soybean rotation at equivalent N application rates.When extra N fertilizer (approximately 56 kg N ha−1) was applied to continuous corn than the corn-soybean rotation, this resulted in 14–36% greater NO3-N concentrations in subsurface drainage from the continuous corn system. While corn yield increased as N application rate increased, corn yields at the recommended N application rates (112–168 kg N ha−1) in the corn-soybean rotation were up to 3145 kg ha−1 greater than corn yields at the recommended application rates (168–224 kg N ha−1) in the continuous corn system. The corn-soybean rotation with recommended N application rates (168–224 kg N ha−1) appeared to be beneficial environmentally and economically.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2499
Author(s):  
Tammo Peters ◽  
Friedhelm Taube ◽  
Christof Kluß ◽  
Thorsten Reinsch ◽  
Ralf Loges ◽  
...  

High doses of nitrogen (N) fertiliser input on permanent pastures are crucial in terms of N surplus and N losses. Quantitative analyses of the response of plant functional traits (PFT) driving crop growth rate (CGR) under low N input are lacking in frequently defoliated pastures. This study aimed to understand the significance of PFTs for productivity and N uptake in permanent grasslands by measuring dynamics in tiller density (TD), tiller weight (TW), leaf weight ratio (LWR), leaf area index (LAI), specific leaf area (SLA), as well as leaf N content per unit mass (LNCm) and per unit area (LNCa) in perennial ryegrass (Lolium perenne)-dominated pastures, in a simulated rotational grazing approach over two consecutive growing seasons. Annual N application rates were 0, 140 and 280 kg N ha−1. The phenological development of perennial ryegrass was the main driver of CGR, N uptake and most PFTs. The effect of N application rate on PFTs varied during the season. N application rate showed the greatest effect on TD, LAI and, to a lesser extent, on SLA and LNCm. The results of this study highlight the importance of TD and its role in driving CGR and N uptake in frequently defoliated permanent pastures.


2020 ◽  
Author(s):  
Bharat Prakash Meena ◽  
Pramod Jha ◽  
K. Ramesh ◽  
A.K. Biswas ◽  
R. Elanchezhian ◽  
...  

AbstractConventionally, non-judicious and blanket fertilizer nitrogen (N) used in rainfed maize lead to higher N losses, low N use efficiency (NUEs) and poor yields due to substandard agronomic management practices. To avoid such N losses, fertilizer additions are synchronized with plant uptake requirements. In this context, agronomic based management focused on optimizing N rates and biochar application is essential for improved NUEs and crop productivity. Keeping this in view, a field experiment was conducted during 2014, 2015 and 2016 in rainfed maize (Zea mays L.) grown in Vertisols of India. In this study, twelve treatments that comprised of N omission plot (N0), skipping of basal rate, multi-split topdressing at varying time as broadcast and band placement, soil test crop response (STCR) based NPK with target yield 6.0 t ha-1 in maize and biochar application (10 t ha−1) were investigated. The experiment was conducted following a Randomized Complete Block Design (RCBD) set up with three replications. Pooled analysis of three years data revealed that the application of N rates (120 kg Nha−1) in 2 equal splits (60 kg Nha−1) at knee high (V8) and tasseling (VT) stages with skipped basal N rate, achieved higher maize grain yield (5.29 t ha−1) ascribed to the greater growth parameters, yield components and N uptake compared to the recommended practices. Biochar application (10 t ha−1) as soil amendments along with multi top dressed N (120 kg N ha−1) into 3 splits also increased the grain yield. Delayed N application at V8 and VT growth stages, resulted in higher N uptake, agronomy efficiency (AE), partial factor productivity (PFP), physiology efficiency (PE) and recovery efficiency (RE). Biochar along with N fertilizer also improved the soil organic carbon (5.47g kg−1), ammonium-N (2.40 mg kg−1) and nitrate-N (0.52 mg kg−1) concentration in soil (P<0.05) as compared to non-biochar treatments. Application of biochar along with chemical fertilizer (120 kg Nha−1) significantly increased the concentration of ammonium (2.40 mg kg−1) and nitrate (0.52 mg kg−1) in soil (P<0.05) as compared to non-biochar treatments. The perfect positive linear relationship illustrated that the grain yield of rainfed maize was highly dependent (R2=0.99 at p<0.0001) on N availability, as indicated by the fitted regression line of maize grain yield on N uptake. On the other hand, factor analysis revealed, the one to one positive function relationship of biomass with N uptake at V8 and VT growth stages. Principal Component Regression (PCR) analysis showed that PC1 acted as a major predictor variable for total dry matter yield (TDMY) and dominated by LAI and N uptake. Consequently, these results expressed that the agronomic management based multi-top dressed N application and biochar application to achieve higher yield and greater NUEs in rainfed maize is strongly linked with N application into splits.


Sign in / Sign up

Export Citation Format

Share Document