scholarly journals Effect of Reclaimed Water and Drought on Salt-sensitive Perennials

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1095B-1095 ◽  
Author(s):  
Ursula Schuch

Four species of salt-sensitive perennials (Chilopsis linearis, Tecoma stans, Salviagreggii, and Verbena pulchella gracilior) were grown in containers and were irrigated with potable or reclaimed water. Electrical conductivity (EC) was 0.3 dS·m-1 for potable irrigation water and 1.0 dS·m-1 for reclaimed irrigation water. After 12 weeks of growing plants with reclaimed vs. potable water, C. linearis leaf dry weight was reduced by 15%, T. stans root dry weight was reduced by 41%, V. puchella gracilior stem dry weight was reduced by 35%, and S. greggii total dry weight was reduced by 56%. The increase in canopy size was calculated 4, 8, and 12 weeks after treatments began and was not affected by water source for C. linearis and T. stans, but was reduced for S. greggii and V. pulchella gracilior treated with reclaimed water. Up to 12% dieback and reduced flowering were observed on S. greggii irrigated with reclaimed water. Within 4 weeks of treatments, EC in the root zone was 0.5 dS·m-1 for plants irrigated with potable water and 1.9 dS·m-1 for those irrigated with reclaimed water. When exposed to drought, C. linearis and T. stans grown with reclaimed water maintained a more negative water potential as soil moisture was depleted. Osmotic potential started to increase significantly for both irrigation treatments when more than 25% moisture from fully saturated containers were lost. In general, plants irrigated with potable water sustained more damage than those irrigated with reclaimed water after recovering from a drought cycle.

Pastura ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 33
Author(s):  
Roni N.G.K. ◽  
S.A. Lindawati

The productivity of forage depends on the availability of nutrients in the soil where it is grown, so fertilization to replace harvested produce is absolutely necessary. This study aims to study the response of gamal and indigofera forage on application of inorganic and organic fertilizers. Research using a completely randomized design factorial pattern of two factors, the first factor is the type of plant (G = Gamal; I = Indigofera) and the second factor is the type of fertilizer (T = without Fertilizer; A = Inorganic fertilizer NPK; K = commercial organic fertilizer; O = conventional organic fertilizer; B = bioorganic fertilizer), repeated 4 times so that it consists of 40 experimental units. The variables observed were plant height, number of leaves, stem diameter, leaf dry weight, stem dry weight, total dry weight of leaves, ratio of dry weight of leaves/stems and leaf area per pot. The results showed that there was no interaction between plant species and types of fertilizer in influencing the response of gamal and indigofera plants. Plant species have a significant effect on stem diameter, while fertilizer types have a significant effect on plant height, leaf dry weight, total dry weight of leaves and leaf area per pot. Based on the results of the study it can be concluded that the response of gamal plants is similar to indigofera, all types of fertilizers can improve the response of plants and organic fertilizers produce the same crop response with inorganic fertilizers. Keywords: gamal, indigofera, inorganic fertilizer, organic fertilizer


1977 ◽  
Vol 57 (1) ◽  
pp. 193-197 ◽  
Author(s):  
D. J. MAJOR

Irrigated Polish rape (Brassica campestris L. cv. Span) and Argentine rape (B. napus L. cv. Zephyr) were harvested at 1-wk intervals at Lethbridge, Alberta and separated into leaves, stems, pods, and seed. Leaves reached maximum dry weight on 8 July for Span and 15 July for Zephyr and then senesced completely or to low levels. Maximum plant dry matter, which ranged from 312 to 1,174 g/m2, occurred in the last half of August. Although total dry weight increased substantially during the period that leaf dry weight was decreasing, crop growth rate also decreased, indicating that leaves were an important source of photosynthates for plant growth.


1996 ◽  
Vol 121 (3) ◽  
pp. 442-452 ◽  
Author(s):  
William R. Argo ◽  
John A. Biernbaum

Hybrid impatiens (Impatiens Wallerana Hook. F.) were planted in a peat-based medium containing two dolomitic liming materials (1.8 kg Ca(OH)2·Mg(OH)2/m3 or 8.4 kg CaCO3·MgCO3/m3) and subirrigated for 17 weeks using four irrigation-water sources (IWSs) with varied bicarbonate alkalinity, Ca2+, Mg2+, and SO4-S content and three water-soluble fertilizers (WSFs) that contained (in mg) 200N-20P-200K/liter but a variable NH4: NO3 ratio, Ca2+, Mg2+, and SO4-S content. The factorial arrangement of the IWS and WSF resulted in a range of Ca2+, Mg2+, and SO4-S concentrations varying by a factor of 10. After 8 weeks, medium pH ranged from 4.5 to 8.5. The maximum critical medium pH for PO4-P uptake was 7.4 to 7.7, which probably was due to a change in most of the water-soluble P to the less-available HPO42- form. Lime type did not affect the long-term increase in medium pH, Ca2+, and Mg2+ concentrations with nutrient solutions containing low NH4+-N and high Ca2+ and Mg2+. The carbonate lime buffered the medium pH and Ca2+ and Mg2+ concentrations with nutrient solutions containing high NH4+-N and low Ca2+ and Mg2+ compared to that measured with the hydrated lime. With both lime types, there was a linear increase in tissue Ca and Mg as the applied concentrations of the various nutrient solutions increased from 18 to 210 mg Ca2+/liter and 7 to 90 mg Mg2+/liter. The relationship was similar for both lime types up to week 8, after which tissue Ca and Mg decreased more rapidly with the hydrated lime and low solution Ca2+ and Mg2+ compared to that of the same carbonate lime treatments. The minimum critical SO4-S concentration in the applied nutrient solution for plant uptake was 30 to 40 mg S/liter. Below this concentration, tissue S decreased rapidly; above, there was little effect on tissue S.


1990 ◽  
Vol 115 (4) ◽  
pp. 525-529 ◽  
Author(s):  
B. Acock ◽  
M.C. Acock ◽  
D. Pasternak

We examined how temperature and stage of vegetative growth affect carbohydrate production and accumulation in Cucumis melo L. `Haogen' grown at various CO2 concentrations ([CO2]). Carbohydrate production was measured by net assimilation rate either on a leaf-area basis (NARa) or a leaf dry-weight basis (NARw); carbohydrate accumulation was measured by leaf starch plus sugar content. Twenty-four- and 35-day-old muskmelon plants were grown for 11 days in artificially lighted cabinets at day/night temperatures of 20/20 or 40/20C and at [CO2] of 300 or 1500 μl·liter-1. NARa and NARw both increased with increasing [CO2], but the CO2 effect was smaller at low temperature, especially for plants at the later stage of vegetative growth. NARw was a better indicator of total dry-weight gain than was NARa. Both suboptimal temperatures and CO2 enrichment caused carbohydrates to accumulate in the leaves at both stages of vegetative growth. NARw was correlated negatively with leaf starch plus sugar content. The rate of decrease in NARw with increasing leaf starch plus sugar content was significantly greater for CO2-enriched plants. Leaf starch plus sugar content >0.03 to 0.04 kg·kg-1 of leaf residual dry weight at the end of a dark period may indicate that temperature is suboptimal for growth. Plants grown at the same temperature had higher leaf starch plus sugar content if they were CO2-enriched than if grown in ambient [CO2], suggesting that an optimal temperature for growth in ambient [CO2] may be suboptimal in elevated [CO2].


2011 ◽  
Vol 52 (No. 4) ◽  
pp. 164-170 ◽  
Author(s):  
M. Vanaja ◽  
P. Vagheera ◽  
P. Ratnakumar ◽  
N. Jyothi lakshmi ◽  
P. Raghuram Reddy ◽  
...  

A study was conducted with two important rainfed food crops viz., sorghum (Sorghum bicolor L. Moench.) and blackgram (Vigna mungo L. Happer) and two oil seed crops viz., sunflower (Helianthus annuus L.) and groundnut (Arachis hypogaea L.) under two conditions viz., elevated CO<sub>2</sub> (600 ppm) and ambient CO<sub>2</sub> (365 ppm) in open top chambers (OTCs). The observations were recorded at the vegetative stage at 7, 14, 21 and 30 days after sowing (DAS). The results showed significant differences between crops, conditions and time intervals, as well as the single and double order interactions for all the characters studied viz., total dry weight, stem dry weight, root dry weight, leaf dry weight, shoot length, root length and leaf area. Total dry weight and its components viz., stem dry weight, root dry weight and leaf dry weight along with leaf area showed a significant increase under enhanced CO<sub>2</sub> conditions. Among the four crops studied the overall results showed the highest response to elevated CO<sub>2</sub> by blackgram while the lowest response by sorghum.


2005 ◽  
Vol 15 (2) ◽  
pp. 324-329 ◽  
Author(s):  
Tyler J. Koschnick ◽  
William T. Haller ◽  
Alison M. Fox

Two formulations of the contact herbicide endothall are used to control submersed aquatic weeds. Waters treated with the amine or dipotassium salt formulations have irrigation restrictions varying from 7 to 25 days depending on the concentration of endothall applied. These water-use restrictions may be reduced for turfgrass if studies conclude there is no phytotoxicity to turf species irrigated with concentrations of endothall that may exist after an aquatic application. Two separate experiments were conducted to determine turfgrass tolerance to endothall in irrigation water on five species of grass: annual ryegrass (Lolium multiflorum), annual bluegrass (Poa annua), centipedegrass (Eremochloa ophiuroides), `Floratam' st. augustinegrass (Stenotaphrum secundatum), and `Tifton 419' bermudagrass (Cynodon dactylon). Expt. 1 used constant concentrations of endothall; Expt. 2 used decreasing concentrations of endothall over time. Annual turf species (bluegrass and ryegrass) were generally more susceptible than perennial turfgrasses. Concentrations resulting in a 10% reduction in total dry weight harvested compared to control plants [effective concentration (EC10)] for the amine and dipotassium salt formulations were 10 and 14 mg·L–1 (ppm) a.i. on annual ryegrass, 10 and 16 mg·L–1 a.i. on annual bluegrass, 50 and 54 mg·L–1 a.i. on centipedegrass, 47 and 72 mg·L–1 a.i. for st. augustinegrass, and for bermudagrass 1301 and 908 mg·L–1 a.i. in Expt. 1. Expt. 2 resulted in EC10 values of 31 and 35 mg·L–1 a.i. on annual ryegrass, 7 and 12 mg·L–1 a.i. on annual bluegrass, 32 and 99 mg·L–1 a.i. on centipedegrass, 27 and 20 mg·L–1 a.i. on st. augustinegrass for the amine and dipotassium formulations of endothall respectively, and 958 mg·L–1 a.i. for the dipotassium formulation on bermudagrass. There was no effect on bermudagrass dry weights when exposed to the amine formulation of endothall in Expt. 2 at concentrations up to 1600 mg·L–1 a.i. There is a low risk of inhibiting growth of turf species at endothall concentrations used for aquatic weed control considering the maximum use concentrations, typical uses of the products, and decomposition rates.


EDIS ◽  
2013 ◽  
Vol 2013 (10) ◽  
Author(s):  
George Hochmuth ◽  
Jinghua Fan ◽  
Jason Kruse ◽  
Jerry Sartain

Municipal wastes are treated at a wastewater treatment facility to produce biosolids and reclaimed water. Reclaimed water treated by filtration and chlorination is safe to use for designated purposes, such as residential landscape irrigation. Florida began using reclaimed water in 1966, and it is a leading state for using reclaimed water. Approximately 660 million gallons of reclaimed water are used every day in Florida, and the state encourages using reclaimed water as an alternative water source to reduce the pressure on potable water supplies. This 3-page fact sheet summarizes the results of a recent research project and provides research-based information for improving nutrient and water management with reclaimed water irrigation of turfgrass. Written by George Hochmuth, Jinghua Fan, Jason Kruse, and Jerry Sartain, and published by the UF Department of Soil and Water Science, November 2013. http://edis.ifas.ufl.edu/ss592


EDIS ◽  
2013 ◽  
Vol 2013 (10) ◽  
Author(s):  
George Hochmuth ◽  
Jinghua Fan ◽  
Jason Kruse ◽  
Jerry Sartain

Municipal wastes are treated at a wastewater treatment facility to produce biosolids and reclaimed water. Reclaimed water treated by filtration and chlorination is safe to use for designated purposes, such as residential landscape irrigation. Florida began using reclaimed water in 1966, and it is a leading state for using reclaimed water. Approximately 660 million gallons of reclaimed water are used every day in Florida, and the state encourages using reclaimed water as an alternative water source to reduce the pressure on potable water supplies. This 5-page fact sheet summarizes the results of a recent research project and provides research-based information for improving nutrient and water management with reclaimed water irrigation of turfgrass. Written by George Hochmuth, Jinghua Fan, Jason Kruse, and Jerry Sartain, and published by the UF Department of Soil and Water Science, November 2013. http://edis.ifas.ufl.edu/ss591


2013 ◽  
Vol 8 ◽  
pp. 74-83 ◽  
Author(s):  
Weiping Chen ◽  
Sidan Lu ◽  
Wentao Jiao ◽  
Meie Wang ◽  
Andrew C. Chang

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 487f-488
Author(s):  
W. Alan Erb ◽  
Linda Parsons ◽  
Mark Pyeatt

This study was conducted to learn when an asparagus plant partitions its biomass into leaves, stems, buds, and rhizomes, and roots and to determine when after harvest the crown of the plant is rejuvenated to the point that harvest can begin again. The plants used in this study were generated by sowing seed on Jan. 1995, transplanting seedlings into 1.8-L containers (5 sand: 4 soil: 1 peat) in Mar. 1995 and on Mar. 1996, placing the crowns into 9.5-L containers. During Fall 1996, the number of shoots per plant were recorded and this data was used to group plants into six classes. The study was started on 8 Apr. 1997 by first removing six plants/cultivar (one from each class) and biomass partitioning each crown into buds and rhizomes, and roots. The remaining plants were harvested eight times and after the final harvest on 20 Apr. another set of plants (six/cultivar) were partitioned. Starting on 3 June, a set of plants were partitioned every 2 weeks until 21 Oct., when growth stopped in the fall. Atlas and UC157 F1 produced the most spears and had the highest yield and they also had the highest total dry weight, leaf dry weight, and stem dry weight. There were no cultivar differences in rhizome and root dry weight. However, `Jersey Giant' and `Atlas' had the highest rhizome and root weight ratio. The highest bud dry weights occurred on 20 May, 23 Sept., 26 Aug., and 21 Oct. and the highest rhizome and root dry weights were on 21 Oct., 12 Aug., 26 Aug., and 23 Sept. The bud dry weight recorded on 12 Aug. was equal to the bud dry weight recorded on 8 Apr. Also on 12 Aug., leaf dry weight and rhizome and root dry weight were higher than almost all the other dates. In addition, above-ground shoot counts and bud dry weights were higher on 26 Aug. than on 12 Aug. All this data indicates that in this study sometime after 12 Aug. and before 26 Aug., the asparagus crown was completely rejuvenated and ready for another cycle of harvesting.


Sign in / Sign up

Export Citation Format

Share Document