scholarly journals DEVELOPMENT OF A WHITE-FLOWERED, COLD-HARDY ALSTROEMERIA

HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 491B-491
Author(s):  
Elizabeth Kollman ◽  
Mark Bridgen

Alstroemeria, the Inca lily or lily-of-the-Incas, is becoming a popular garden plant in the United States. In past years, the primary interest in Alstroemeria has been for its cut flowers. However, recent cold-hardy introductions (USDA hardiness zone 5) have expanded the interest of this colorful plant as a garden perennial throughout the U.S. Previously, garden interests were restricted to warmer zones in the southern United States where Alstroemeria could over-winter. This research describes a breeding procedure which has been used with the objective to develop a cold-hardy, white flowered Alstroemeria. The interspecific hybrids were bred with the use of in ovulo embryo rescue. Reciprocal crosses were made between several white-flowered cultivars and the cold hardy Chilean species, Alstroemeria aurea during the summers of 2004 and 2005. Ovaries were collected 10–23 days after hand pollination and their ovules were aseptically excised. Ovules were placed in vitro on 25% Murashige and Skoog (MS) medium under dark conditions until germination. Three weeks after germination they were then placed on 100% MS medium, and subcultured every three to four weeks thereafter until they were large enough for rooting. After rooting and acclimation, plants were transferred to the greenhouse. Successful hybrids that were produced in 2004 were evaluated under greenhouse and field trials during 2005. Data on the flower color for each of the hybrids were recorded, as well as certain morphological characteristics that can indicate cold-hardiness. Hybrid plants are being overwintered outside in Ithaca, N.Y. (USDA zone 5), and Riverhead, N.Y. (USDA zone 7), during the next several years for a more accurate assessment of cold-hardiness. Self pollinations and reciprocal crosses with the white-flowered parent were performed on the F1 generation in the summer and fall of 2005 in order to determine segregating characteristics. Few ovules were obtained from F1 generation crosses. Successful F2generation plants are being grown in vitro and will be transferred to the greenhouse where flower color will be noted. Root squashes and pollen staining were completed to determine ploidy levels and assess male sterility of the F1 generation.

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1003E-1004
Author(s):  
Elizabeth L. Kollman ◽  
Mark P. Bridgen

Alstroemeria, the Inca Lily or Lily-of-the-Incas, is becoming a popular garden plant in the United States. In past years, the primary interest in Alstroemeria has been for its cut flowers. However, recent cold-hardy introductions (USDA hardiness zone 5) have expanded the interest of this colorful plant as a garden perennial throughout the United States. Previously, garden interests were restricted to warmer zones in the southern United States where Alstroemeria could overwinter. This research describes a breeding procedure that has been used with the objective to develop a cold-hardy, white-flowered Alstroemeria. The interspecific hybrids were bred with the use of in ovulo embryo rescue. Reciprocal crosses were made between several white-flowered cultivars and the cold-hardy Chilean species Alstroemeriaaurea during Summer 2004. Ovaries were collected 10–23 days after hand pollination and their ovules were aseptically excised. Ovules were placed in vitro on 25% Murashige and Skoog (MS) medium under dark conditions until germination. Three weeks after germination, they were then placed on 100% MS medium, and subcultured every 3–4 weeks thereafter until they were large enough for rooting. After rooting and acclimation, plants were transferred to the greenhouse. Successful hybrids that were produced in 2004 were evaluated under greenhouse and field trials during 2005, and the number of plants with white-colored flowers was noted. Although certain morphological characteristics indicate if plants are coldhardy, the hybrids will be overwintered outside in Ithaca, N.Y. (USDA zone 5), during the next several years to determine winter hardiness.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1002C-1002
Author(s):  
Keri Jones ◽  
Sandra Reed

Hydrangea arborescens L., or smooth hydrangea, is a shrub native to the eastern United States that produces large corymbs of pure white flowers in early summer. Rated as hardy to USDA cold hardiness zone 4, it is one of the most cold-hardy members of the genus. Hydrangea involucrata Sieb. is an Asian species that produces lavender-blue flowers in midsummer. This species, which is not widely cultivated in the United States, is only rated as hardy to zone 6 to 7. The objective of this study was to hybridize H. arborescens and H. involucrata for the purpose of combining cold hardiness and flower color. Reciprocal crosses were made between H. involucrata and H. arborescens during Summer 2003. No seed were obtained when H. involucrata was used as the maternal parent. Approximately 500 seeds were collected from H. arborescen × H. involucrata hybridizations, 36 of which germinated. Several of these seedlings were extremely weak and died at a young age. The remaining eight plants have not flowered and all possess reduced growth rates. Hybridity was verified using RAPD markers and morphological comparisons of hybrids and parents.


2007 ◽  
pp. 161-168 ◽  
Author(s):  
M.A. Start ◽  
J. Luby ◽  
D. Filler ◽  
O. Riera-Lizarazu ◽  
R. Guthrie

HortScience ◽  
2018 ◽  
Vol 53 (3) ◽  
pp. 268-274 ◽  
Author(s):  
Alexander Q. Susko ◽  
Timothy A. Rinehart ◽  
James M. Bradeen ◽  
Stan C. Hokanson

Deciduous azaleas are an important element of residential and commercial landscapes in the United States after substantial trait improvements to increase their market appeal. Despite progress in breeding for ornamental characteristics and cold hardiness, intolerance to elevated pH and calcareous soils continues to limit their use in managed landscapes. Therefore, we assessed the utility of in vitro and greenhouse phenotyping approaches to evaluate and select for improved soil pH tolerance to increase the efficiency of breeding for this important trait. The research presented offers an example for implementing image-based phenotyping to expedite cultivar development in woody ornamental crops.


HortScience ◽  
2015 ◽  
Vol 50 (12) ◽  
pp. 1765-1769 ◽  
Author(s):  
Ming Cai ◽  
Ke Wang ◽  
Le Luo ◽  
Hui-tang Pan ◽  
Qi-xiang Zhang ◽  
...  

Hydrangea macrophylla is the most popular species in the genus Hydrangea because of its large and brightly colored inflorescences. Since the early 1900s, numerous cultivars with showy flowers have been selected. Although many H. macrophylla cultivars have been developed, cold hardiness is still the major limitation to their outdoor use. Hydrangea arborescens is a small attractive shrub or subshrub native to northeastern parts of the United States, which is valued for its hardiness. Interspecific breeding of H. arborescens and H. macrophylla has been tried, but putative hybrid seedlings either died at an early stage or were not verified. We made successful hybridizations between H. macrophylla ‘Blue Diamond’ and H. arborescens ‘Annabelle’ and used in vitro ovary culture to produce viable plants. Hybrids were intermediate in appearance between parents, but variable in leaves, inflorescences, and flower color. The success of this hybridization was confirmed by six simple sequence repeat (SSR) genetic markers. The maternal chromosome number was 36, and the paternal number was 38. Chromosome counts of hybrids indicated that nearly half of them were aneuploids. Male fertility of progeny was evaluated by fluorescein diacetate staining of pollen. Twelve out of 14 hybrids (85.7%) had male fertility. We documented the first flowering progeny of H. macrophylla and H. arborescens, suggesting an effective beginning to a cold hardiness breeding program.


HortScience ◽  
1995 ◽  
Vol 30 (3) ◽  
pp. 434f-434
Author(s):  
Jameel M. Al-Khayri ◽  
Teddy E. Morelock ◽  
Edwin J. Anderson

Cowpea, or southernpea, is an important food legume that provides a source of high-quality protein, especially in the mature seeds. In the United States, industries exist to supply dry and processed seeds. Our aim is to develop a regeneration system for cowpea as a prerequisite for genetic engineering. Our objective was to examine the in vitro responses of shoot tips to growth regulators. Shoot tips isolated from in vitro-germinated seedlings (`Coronet') were cultured on MS medium containing 2,4-D at 0, 0.01, 0.1, or 1 mg·liter–1 and kinetin at 2.5, 5, 10, or 20 mg·liter–1. Cultures were maintained at 12-hour photoperiods and 24C. Callus, shoots, and roots or combinations thereof developed depending on the treatment. Callus formed on 1 mg 2,4-D/liter, regardless of the kinetin level, but at 0.1 mg 2,4-D/liter and 5 or 10 mg kinetin/liter, shoots also grew. Callus, shoots, and roots developed on 2,4-D lower than 0.1 mg·liter–1. Callus induced on 5 mg kinetin/liter and 0.01 mg 2,4-D/liter regenerated shoots on transfer to 5 mg kinetin/liter and 0.1 mg NAA/liter. This work may assist in the development of a micropropagation system for cowpea.


Author(s):  
A. Hakam ◽  
J.T. Gau ◽  
M.L. Grove ◽  
B.A. Evans ◽  
M. Shuman ◽  
...  

Prostate adenocarcinoma is the most common malignant tumor of men in the United States and is the third leading cause of death in men. Despite attempts at early detection, there will be 244,000 new cases and 44,000 deaths from the disease in the United States in 1995. Therapeutic progress against this disease is hindered by an incomplete understanding of prostate epithelial cell biology, the availability of human tissues for in vitro experimentation, slow dissemination of information between prostate cancer research teams and the increasing pressure to “ stretch” research dollars at the same time staff reductions are occurring.To meet these challenges, we have used the correlative microscopy (CM) and client/server (C/S) computing to increase productivity while decreasing costs. Critical elements of our program are as follows:1) Establishing the Western Pennsylvania Genitourinary (GU) Tissue Bank which includes >100 prostates from patients with prostate adenocarcinoma as well as >20 normal prostates from transplant organ donors.


2019 ◽  
Vol 109 (12) ◽  
pp. 2055-2063 ◽  
Author(s):  
Francesca Dennert ◽  
Joana Beatrice Meyer ◽  
Daniel Rigling ◽  
Simone Prospero

Intraspecific cryptic invasions may occur when new strains of an invasive species are introduced into an area where this species had already been introduced previously. In plant pathogens, such invasions are not well studied, even if, potentially, they can have severe consequences. Here, we investigated the effects of a potential intraspecific invasion in Europe of Cryphonectria parasitica, the causal agent of chestnut blight. Specifically, we tested the hypotheses that (i) non-European strains are more virulent on Castanea sativa than those already present in Europe because they have never encountered this new host, and (ii) the variation in virulence among strains is higher within native than within introduced populations. In a greenhouse, 2-year-old C. sativa seedlings were inoculated with Cryphonectria parasitica strains from South Korea, the United States, and Switzerland, and lesion development and seedling mortality were recorded weekly. Additionally, growth and sporulation of the strains were measured in vitro on agar medium at 15 and 24°C. Although lesion growth was similar for all strains, seedlings inoculated with strains from South Korea and Switzerland died faster than seedlings inoculated with strains from the United States. Moreover, in vitro strains from South Korea grew faster and produced more spores at both temperatures than the strains from the other two countries. In conclusion, our results did not support the two hypotheses. All strains, regardless of their origin, were found to be highly virulent on the inoculated chestnut seedlings. Nevertheless, current phytosanitary measures to avoid the introduction of new genotypes of C. parasitica into Europe should be further implemented.


2005 ◽  
Vol 79 (17) ◽  
pp. 11412-11421 ◽  
Author(s):  
Chang-Won Lee ◽  
David E. Swayne ◽  
Jose A. Linares ◽  
Dennis A. Senne ◽  
David L. Suarez

ABSTRACT In early 2004, an H5N2 avian influenza virus (AIV) that met the molecular criteria for classification as a highly pathogenic AIV was isolated from chickens in the state of Texas in the United States. However, clinical manifestations in the affected flock were consistent with avian influenza caused by a low-pathogenicity AIV and the representative virus (A/chicken/Texas/298313/04 [TX/04]) was not virulent for experimentally inoculated chickens. The hemagglutinin (HA) gene of the TX/04 isolate was similar in sequence to A/chicken/Texas/167280-4/02 (TX/02), a low-pathogenicity AIV isolate recovered from chickens in Texas in 2002. However, the TX/04 isolate had one additional basic amino acid at the HA cleavage site, which could be attributed to a single point mutation. The TX/04 isolate was similar in sequence to TX/02 isolate in several internal genes (NP, M, and NS), but some genes (PA, PB1, and PB2) had sequence of a clearly different origin. The TX/04 isolate also had a stalk deletion in the NA gene, characteristic of a chicken-adapted AIV. By analyzing viruses constructed by in vitro mutagenesis followed by reverse genetics, we found that the pathogenicity of the TX/04 virus could be increased in vitro and in vivo by the insertion of an additional basic amino acid at the HA cleavage site and not by the loss of a glycosylation site near the cleavage site. Our study provides the genetic and biologic characteristics of the TX/04 isolate, which highlight the complexity of the polygenic nature of the virulence of influenza viruses.


Sign in / Sign up

Export Citation Format

Share Document