scholarly journals ETHYLENE IN STORAGE: AN EVALUATION OF THREE INFLUENTIAL FACTORS ON TULIP BULBS' SENSITIVITY TO ETHYLENE DURING POSTHARVEST SHIPPING AND STORAGE

HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 491C-491 ◽  
Author(s):  
Susan S. Liou ◽  
Chris B. Watkins ◽  
William B. Miller

During transport and the subsequent storage of tulip bulbs, inadvertent failure in ventilation and/or high contamination of Fusarium-infected bulbs may expose healthy bulbs to high concentrations of ethylene. Ethylene is known to cause many detrimental effects on forcing quality, including gummosis, increased respiration, flower bud abortion, bulb splitting and poor rooting. In this work, exposure duration and timing as well as the post-stress storage temperatures were evaluated for their potential effects on ethylene sensitivity in bulbs of four tulip cultivars. Degree of damage in sensitive cultivars `Apeldoorn' and `World's Favourite' increased with days at about 10 ppm ethylene starting at 9 and 16 days respectively. This effect strongly depended on timing of ethylene stress, as late treated bulbs showed more severe responses to ethylene treatment than early treated bulbs. Additionally, bulbs that were cooled immediately after ethylene stress, compared with those stored at 17 °C after stress, have significantly higher flowering quality in all attributes measured. This response was also strongly dependent on timing of ethylene stress and cultivar. Implications of the potential cold reversal of ethylene damage as well as effects of ethylene exposure duration and timing of stress on shipping and storage recommendations will be discussed.

2021 ◽  
Vol 22 (8) ◽  
pp. 3932
Author(s):  
Jing Cao ◽  
Qijiang Jin ◽  
Jiaying Kuang ◽  
Yanjie Wang ◽  
Yingchun Xu

The lotus produces flower buds at each node, yet most of them are aborted because of unfavorable environmental changes and the mechanism remains unclear. In this work, we proposed a potential novel pathway for ABA-mediated flower timing control in the lotus, which was explored by combining molecular, genetic, transcriptomic, biochemical, and pharmacologic approaches. We found that the aborting flower buds experienced extensive programmed cell death (PCD). The hormonal changes between the normal and aborting flower buds were dominated by abscisic acid (ABA). Seedlings treated with increasing concentrations of ABA exhibited a differential alleviating effect on flower bud abortion, with a maximal response at 80 μM. Transcriptome analysis further confirmed the changes of ABA content and the occurrence of PCD, and indicated the importance of PCD-related SNF1-related protein kinase 1 (NnSnRK1). The NnSnRK1-silenced lotus seedlings showed stronger flowering ability, with their flower:leaf ratio increased by 40%. When seedlings were treated with ABA, the expression level and protein kinase activity of NnSnRK1 significantly decreased. The phenotype of NnSnRK1-silenced seedlings could also be enhanced by ABA treatment and reversed by tungstate treatment. These results suggested that the decline of ABA content in lotus flower buds released its repression of NnSnRK1, which then initiated flower bud abortion.


2018 ◽  
Vol 7 (4) ◽  
pp. 147-156
Author(s):  
Laredj-Zazou Rahma ◽  
Toumi Benali Fawzia ◽  
Bouazza Sofiane

Stress salinity has an important effect on crops physiology. The scope of our study was to evaluate the effect of salt stress tolerance as determined through growth attributes, water status and ion content in (Phaseolus vul-garis. L), the variety of El-Djadida in 6 weeks post stress application. The ex-periment was performed under glasshouse, in controlled conditions, in pots and irrigated with nutrient solution of Hoagland. Plants were irrigated with water containing sodium chloride alone (100 and 200 meq.l-1) combined with sodium chloride (NaCl) and calcium chloride (CaCl2) (100 and 150 meq.l-1). The results obtained showed that the salt application had a depressive effect on the organic growth however, this trend was dependant on the intensity of the stress. The hydric state of the plant varied with the concentration of sub-strate, thus exhibiting the ability to moderate the sensitive plant to adjust gradually to their osmotic pressure even by maintaining high concentrations of K+. The distribution of Na+, K+ and Ca++ in plant organs leaves and roots highlighted that the high level of salinity increased with levels of Na+ which inhibited the absorption of Ca++ and K+ ions.


1995 ◽  
pp. 185-192 ◽  
Author(s):  
B.H. Nakasu ◽  
F.G. Herter ◽  
D.L. Leite ◽  
M.C.B. Raseira

2015 ◽  
Vol 1120-1121 ◽  
pp. 643-647
Author(s):  
Ya Bo Fu ◽  
Wen Cai Xu ◽  
Lu Fu ◽  
Dong Li Li ◽  
Jian Qing Wang

To reduce the loss of fresh fruits during transportation and storage, an active packaging (AP) material which could control release fungicide was prepared by melting, blowing film and composite method firstly. Then, its preservation effects on strawberry at different storage temperatures were investigated systematically. Several properties of preserved strawberries were measured periodically, including gas concentration of the package atmosphere and the physiological parameters contains decay rate, total solid content, as well as the sensory and taste evaluation were measured. The experimental results show that this AP material is helpful to fruit preservation, especially at lower temperature. It can prohibit the strawberry respiration, retard fungus growth and thus significantly extend the shelf-life of fresh strawberry.


1976 ◽  
Vol 4 (1) ◽  
pp. 1-5
Author(s):  
E M Scott ◽  
W Woodside

The effect of suspending media on the stability of pseudorabies virus upon freeze-drying and subsequent storage was studied. A variety of media was tested, including: sodium glutamate; sucrose; lactose; lactalbumin hydrolysate; peptone; a combination of sucrose, dextran, and glutamate; and various combinations of sucrose, glutamate, and potassium phosphates. Suspending media containing glutamate, either alone or in combination with sucrose and either dextran or phosphates, afforded the greatest degree of protection during the freeze-drying process and upon storage. Some possible functions of these additives in preventing injury to the virus during freezing and drying have been suggested.


Sign in / Sign up

Export Citation Format

Share Document