scholarly journals Relative Salt Tolerance of 22 Pomegranate (Punica granatum) Cultivars

HortScience ◽  
2018 ◽  
Vol 53 (10) ◽  
pp. 1513-1519 ◽  
Author(s):  
Youping Sun ◽  
Genhua Niu ◽  
Joseph G. Masabni ◽  
Girisha Ganjegunte

A greenhouse experiment was conducted to determine the relative salt tolerance of pomegranate (Punica granatum) cultivars. Twenty-two pomegranate cultivars were irrigated weekly with a saline solution at an electrical conductivity (EC) of 10.0 dS·m–1 for 4 weeks and subsequently with a saline solution at an EC of 15.0 dS·m–1 for another 3 weeks (salt treatment). Another group of uniform plants was watered with a nutrient solution without additional salts at an EC of 1.2 dS·m–1 (control). No visual foliar salt damage (leaf burn, necrosis, or discoloration) was observed during the entire experimental period; however, salt treatment impacted pomegranate growth negatively, with a large variation among cultivars. Salt treatment reduced shoot length by 25% and dry weight (DW) by 32% on average for all cultivars. Cluster analysis classified the 22 tested pomegranate cultivars in two groups. The group consisting of ‘Arturo Ivey’, ‘DeAnda’, ‘Kazake’, ‘Russian 8’, ‘Apseronski’, ‘Purple Heart’, ‘Carolina Vernum’, ‘Chiva’, ‘Kunduzski’, ‘Larry Ceballos 1’, ‘ML’, ‘Salavatski’, ‘Spanish Sweet’, and ‘Wonderful’ was more salt tolerant than the group including ‘Al-Sirin-Nar’, ‘Kandahar’, ‘Surh-Anor’, ‘Early Wonderful’, ‘Angel Red’, ‘Ben Ivey’, ‘Utah Sweet’, and ‘Mollar’. The sodium (Na) concentration in the leaf tissue of all 22 pomegranate cultivars was less than 1 mg·g–1 on a DW basis. All pomegranate cultivars in the salt treatment had an average leaf chloride (Cl) content of 10.03 mg·g–1 DW—an increase of 17% from the control. These results indicate that pomegranate plants have a strong capability to exclude Na and Cl accumulation in leaf tissue. In conclusion, the pomegranate plant is very tolerant to saline water irrigation up to an EC of 15 dS·m–1 with little foliar salt damage and a slight growth reduction. Investigation is needed to determine the effects of saline water on the fruit yield and nutritional quality of pomegranate.

HortScience ◽  
2012 ◽  
Vol 47 (11) ◽  
pp. 1653-1657 ◽  
Author(s):  
Genhua Niu ◽  
Pedro Osuna ◽  
Youping Sun ◽  
Denise S. Rodriguez

Ornamental chile peppers are popular bedding plants. As high-quality water supply becomes limited in many parts of the world, alternative waters such as municipal reclaimed water is encouraged to be used for landscape irrigation. The purpose of this study was to assess the relative salt tolerance of 10 cultivars of ornamental chile peppers by irrigating the mature plants with saline solutions and germinating seeds in saline substrate in a greenhouse. In the mature plant salt tolerance experiment, plants were irrigated with nutrient solution (no addition of salts, control) or saline solution at electrical conductance (EC) of 4.1 dS·m−1 or 8.1 dS·m−1 for 8 weeks. Plants in the EC of 4.1 dS·m−1 treatment did not have any foliar salt damage regardless of cultivar. At EC of 8.1 dS·m−1, ‘NuMex Memorial Day’ had the most severe foliar salt damage, whereas ‘NuMex April Fool’s Day’, ‘NuMex Cinco de Mayo’, ‘NuMex Thanksgiving’, and ‘NuMex Twilight’ had little or no foliar damage. Shoot dry weight (DW) reduction at EC of 8.1 dS·m−1 compared with control was smallest in ‘NuMex Thanksgiving’ (15%), whereas ‘NuMex Memorial Day’ had the greatest reduction of 74% followed by ‘NuMex Christmas’ of 61%. The highest shoot DW reduction in ‘NuMex Memorial Day’ coincided with lowest visual score, indicating that this cultivar was the least tolerant to salinity. The leaf Na+ and Cl− concentrations increased dramatically with increasing EC of the irrigation water in all cultivars. The highest Na+ concentration of 10.9 mg·g−1 DW at EC of 8.1 dS·m−1 was observed in ‘NuMex Christmas’. The highest Cl− concentration at EC of 8.1 dS·m−1 was found in ‘NuMex Memorial Day’ with 64.8 mg·g−1 DW, which was four times higher than the control. In the seedling emergence experiment, seeds of the 10 cultivars were germinated in substrate either moistened with reverse osmosis water (EC ≈0) or saline solution at EC of 17.1 dS·m−1. ‘NuMex Christmas’ and ‘NuMex Memorial Day’ had the lowest relative seedling emergence index, indicating that these two cultivars were the least tolerant to salinity during the seedling emergence stage. ‘NuMex Thanksgiving’ and ‘NuMex Cinco de Mayo’ had the highest relative seedling emergence index. Combining the results from both experiments, we concluded that ‘NuMex Cinco de Mayo’ and ‘NuMex Thanksgiving’ were the most tolerant cultivars, whereas ‘NuMex Christmas’ and ‘NuMex Memorial Day’ were the least tolerant ones.


HortScience ◽  
2019 ◽  
Vol 54 (11) ◽  
pp. 2056-2062 ◽  
Author(s):  
Asmita Paudel ◽  
Ji Jhong Chen ◽  
Youping Sun ◽  
Yuxiang Wang ◽  
Richard Anderson

Sego SupremeTM is a designated plant breeding and introduction program at the Utah State University Botanical Center and the Center for Water Efficient Landscaping. This plant selection program introduces native and adapted plants to the arid West for aesthetic landscaping and water conservation. The plants are evaluated for characteristics such as color, flowering, ease of propagation, market demand, disease/pest resistance, and drought tolerance. However, salt tolerance has not been considered during the evaluation processes. Four Sego SupremeTM plants [Aquilegia barnebyi (oil shale columbine), Clematis fruticosa (Mongolian gold clematis), Epilobium septentrionale (northern willowherb), and Tetraneuris acaulis var. arizonica (Arizona four-nerve daisy)] were evaluated for salt tolerance in a greenhouse. Uniform plants were irrigated weekly with a nutrient solution at an electrical conductivity (EC) of 1.25 dS·m−1 as control or a saline solution at an EC of 2.5, 5.0, 7.5, or 10.0 dS·m−1 for 8 weeks. After 8 weeks of irrigation, A. barnebyi irrigated with saline solution at an EC of 5.0 dS·m−1 had slight foliar salt damage with an average visual score of 3.7 (0 = dead; 5 = excellent), and more than 50% of the plants were dead when irrigated with saline solutions at an EC of 7.5 and 10.0 dS·m−1. However, C. fruticosa, E. septentrionale, and T. acaulis had no or minimal foliar salt damage with visual scores of 4.2, 4.1, and 4.3, respectively, when irrigated with saline solution at an EC of 10.0 dS·m−1. As the salinity levels of treatment solutions increased, plant height, leaf area, and shoot dry weight of C. fruticosa and T. acaulis decreased linearly; plant height of A. barnebyi and E. septentrionale also declined linearly, but their leaf area and shoot dry weight decreased quadratically. Compared with the control, the shoot dry weights of A. barnebyi, C. fruticosa, E. septentrionale, and T. acaulis decreased by 71.3%, 56.3%, 69.7%, and 48.1%, respectively, when irrigated with saline solution at an EC of 10.0 dS·m−1. Aquilegia barnebyi and C. fruticosa did not bloom during the experiment at all treatments. Elevated salinity reduced the number of flowers in E. septentrionale and T. acaulis. Elevated salinity also reduced the number of shoots in all four species. Among the four species, sodium (Na+) and chloride (Cl–) concentration increased the most in A. barnebyi by 53 and 48 times, respectively, when irrigated with saline solution at an EC of 10.0 dS·m−1. In this study, C. fruticosa and T. acaulis had minimal foliar salt damage and less reduction in shoot dry weight, indicating that they are more tolerant to salinity. Epilobium septentrionale was moderately tolerant to saline solution irrigation with less foliar damage, although it had more reduction in shoot dry weight. On the other hand, A. barnebyi was the least tolerant with severe foliar damage, more reduction in shoot dry weight, and a greater concentration of Na+ and Cl–.


2019 ◽  
Vol 29 (3) ◽  
pp. 367-373
Author(s):  
Yuxiang Wang ◽  
Liqin Li ◽  
Youping Sun ◽  
Xin Dai

Spirea (Spiraea sp.) plants are commonly used in landscapes in Utah and the intermountain western United States. The relative salt tolerance of seven japanese spirea (Spiraea japonica) cultivars (Galen, Minspi, NCSX1, NCSX2, SMNSJMFP, Tracy, and Yan) were evaluated in a greenhouse. Plants were irrigated with a nutrient solution with an electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solutions with an EC of 3.0 or 6.0 dS·m−1 once per week for 8 weeks. At 8 weeks after the initiation of treatment, all japanese spirea cultivars irrigated with saline solution with an EC of 3.0 dS·m−1 still exhibited good or excellent visual quality, with all plants having visual scores of 4 or 5 (0 = dead, 1 = severe foliar salt damage, 2 = moderate foliar salt damage, 3 = slight foliar salt damage, 4 = minimal foliar salt damage, 5 = excellent), except for Tracy and Yan, with only 29% and 64%, respectively, of plants with visual scores less than 3. When irrigated with saline solution with an EC of 6.0 dS·m−1, both ‘Tracy’ and ‘Yan’ plants died, and 75% of ‘NCSX2’ plants died. ‘Minspi’ showed severe foliar salt damage, with 32% of plants having a visual score of 1; 25% of plants died. ‘Galen’ and ‘NCSX1’ had slight-to-moderate foliar salt damage, with 25% and 21%, respectively, of plants with visual scores of 2 or less. However, 64% of ‘SMNSJMFP’ plants had good or excellent visual quality, with visual scores more than 4. Saline irrigation water with an EC of 3.0 dS·m−1 decreased the shoot dry weight of ‘Galen’, ‘Minspi’, ‘SMNSJMFP’, and ‘Yan’ by 27%, 22%, 28%, and 35%, respectively, compared with that of the control. All japanese spirea cultivars had 35% to 56% lower shoot dry weight than the control when they were irrigated with saline irrigation water with an EC of 6.0 dS·m−1. The japanese spirea were moderately sensitive to the salinity levels in this experiment. ‘Galen’ and ‘SMNSJMFP’ japanese spirea exhibited less foliar salt damage and reductions in shoot dry weight and were relatively more tolerant to the increased salinity levels tested in this study than the remaining five cultivars (Minspi, NCSX1, NCSX2, Tracy, and Yan).


HortScience ◽  
2017 ◽  
Vol 52 (12) ◽  
pp. 1810-1815 ◽  
Author(s):  
Lifei Chen ◽  
Youping Sun ◽  
Genhua Niu ◽  
Qiang Liu ◽  
James Altland

Relative salt tolerance of eight Berberis thunbergii (japanese barberry) cultivars (B. thunbergii ‘Celeste’, ‘Kasia’, ‘Maria’, ‘Mini’, and ‘Talago’; B. thunbergii var. atropurpurea ‘Concorde’, ‘Helmond Pillar’, and ‘Rose Glow’) was evaluated in a greenhouse experiment. Plants were irrigated with nutrient solution at an electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solutions at an EC of 5.0 or 10.0 dS·m−1 (EC 5 or EC 10) once a week for 8 weeks. At 4 weeks after treatment, all barberry cultivars in EC 5 had minimal foliar damage with visual scores of 4 or greater (visual score 0: dead, 5: excellent). At 8 weeks after treatment, in EC 5, ‘Helmond Pillar’, ‘Maria’, ‘Mini’, and ‘Rose Glow’ plants exhibited slight foliar salt damage with an average visual score of 3.5, whereas ‘Celeste’, ‘Concorde’, ‘Kasia’, and ‘Talago’ had minimal foliar salt damage with an averaged visual score of 4.4. However, most barberry plants in EC 10 exhibited severe foliar salt damage 4 weeks after treatment with the exception of ‘Concorde’ and were dead 8 weeks after treatment. Compared with control, at the end of the experiment (8 weeks of treatments), shoot dry weight (DW) of ‘Celeste’, ‘Helmond Pillar’, ‘Maria’, and ‘Rose Glow’ in EC 5 was reduced by 47%, 47%, 50%, and 42%, respectively, whereas shoot DW of ‘Concorde’, ‘Kasia’, ‘Mini’, and ‘Talago’ in EC 5 did not change. In EC 10, shoot DW of ‘Celeste’, ‘Concorde’, ‘Kasia’, and ‘Talago’ was reduced by 75%, 35%, 55%, and 46%, respectively. The averaged sodium (Na) concentration of all barberry cultivars in EC 5 and EC 10 was 34 and 87 times, respectively, higher than the control, whereas leaf chloride (Cl) concentration of all barberry cultivars in EC 5 and EC 10 was 14–60 and 29–106 times, respectively, higher than the control. Growth, visual quality, and performance index (PI) were all negatively correlated with leaf Na and Cl content in all cultivars, suggesting that excessive Na and Cl accumulation in the leaf tissue led to growth reduction, salt damage, and death. In summary, ‘Concorde’, ‘Kasia’, and ‘Talago’ were relatively salt tolerant; ‘Helmond Pillar’, ‘Maria’, ‘Mini’, and ‘Rose Glow’ were relatively salt sensitive; and ‘Celeste’ was in between the two groups. Generally, barberry plants had moderate salt tolerance and can be irrigated with marginal water at an EC of 5 dS·m−1 or lower with slight foliar damage.


HortScience ◽  
2017 ◽  
Vol 52 (12) ◽  
pp. 1816-1822 ◽  
Author(s):  
Qiang Liu ◽  
Youping Sun ◽  
Genhua Niu ◽  
James Altland ◽  
Lifei Chen ◽  
...  

Because of limited supply of high-quality water, alternative water sources have been used for irrigation in water-scarce regions. However, alternative waters usually contain high salt levels, which can cause salt damage on salt-sensitive plants. A greenhouse study was conducted to evaluate the relative salt tolerance of 10 common ornamental taxa to saline water irrigation. The 10 taxa studied were Chaenomeles speciosa ‘Orange Storm’ and ‘Pink Storm’ (Chaenomeles Double Take™); Diervilla rivularis ‘G2X885411’, ‘G2X88544’ (Diervilla Kodiak®, Black, Orange, and Red, respectively), and ‘Smndrsf’; Forsythia ×intermedia ‘Mindor’ (Forsythia Show Off®); Hibiscus syriacus ‘ILVOPS’ (Hibiscus Purple Satin®); Hydrangea macrophylla ‘Smhmtau’ and ‘Smnhmsigma’ (Hydrangea Let’s Dance® Blue Jangles® and Rave, respectively); and Parthenocissus quinquefolia ‘Troki’ (Parthenociss quinquefolia Red Wall®). Plants were irrigated with a nutrient solution at an electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solutions at EC of 5.0 or 10.0 dS·m−1 (EC 5 or EC 10) eight times on a weekly basis. The results indicated that the 10 ornamental taxa had different morphological and physiological responses to salinity. The C. speciosa and D. rivularis plants in EC 5 had severe salt foliar damage, whereas those in EC 10 were dead. Hibiscus syriacus ‘ILVOPS’ performed well in EC 5 treatment with a shoot dry weight (DW) reduction of 26%, but those in EC 10 had severe foliar salt damage. Hydrangea macrophylla, F. ×intermedia ‘Mindor’ and P. quinquefolia ‘Troki’ were the most salt tolerant with minor foliar salt damage. The two H. macrophylla cultivars had the highest shoot sodium (Na) and chlorine (Cl) concentrations with a visual quality of 3 (scale 0 to 5 with 0 for dead plants and 5 for excellent performance), indicating that H. macrophylla plants adapted to elevated salinity by tolerating high Na and Cl concentrations in leaf tissue. Forsythia ×intermedia ‘Mindor’ and P. quinquefolia ‘Troki’ had relatively low leaf Na and Cl concentration, indicating that both taxa are capable of excluding Na and Cl. Chaenomeles speciosa and D. rivularis were sensitive to salinity with great growth reduction, severe foliar salt damage, and high Na and Cl accumulation in leaf tissue.


HortScience ◽  
2020 ◽  
Vol 55 (6) ◽  
pp. 888-895
Author(s):  
Youping Sun ◽  
Liqin Li ◽  
Yuxiang Wang ◽  
Xin Dai

Spirea (Spiraea sp.) plants are popular landscape plants in Utah and the Intermountain West United States. Spiraea betulifolia, S. japonica, S. media, S. nipponica, and S. thunbergii were evaluated for salinity tolerance in a greenhouse experiment. Plants were irrigated weekly with a nutrient solution at an electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solution at an EC of 3.0 or 6.0 dS·m−1 for 8 weeks. At the end of the experiment, all spirea plants survived and retained good visual quality, with average visual scores greater than 4 (0 = dead, 5 = excellent) when irrigated with saline solution at an EC of 3.0 dS·m−1, with the exception of S. thunbergii, which showed slight foliar salt damage and an average visual score of 3.8. When irrigated with saline solution at an EC of 6.0 dS·m−1, all S. thunbergii plants died, S. media exhibited severe foliar salt damage and an average visual score of 1.5, and S. betulifolia, S. japonica, and S. nipponica displayed slight-to-moderate foliar salt damage and average visual scores greater than 3. Regardless of spirea species, shoot dry weight decreased by 20% and 48% when irrigated with saline solution at ECs of 3.0 and 6.0 dS·m−1, respectively, compared with the control. Saline solution at an EC of 3.0 dS·m−1 did not affect net photosynthesis (Pn) of all spirea species except S. nipponica, but saline solution at an EC of 6.0 dS·m−1 decreased the Pn of all species by 36% to 60%. There were 37, 7, 36, 21, and 104 times more sodium (Na+) concentrations in leaf and 29, 28, 28, 13, and 69 times more chloride (Cl−) concentrations in leaf than in the control when S. betulifolia, S. japonica, S. media, S. nipponica, and S. thunbergii were irrigated with saline solution at an EC of 6.0 dS·m−1. Correlation analyses indicated that foliar salt damage and reduced plant growth and photosynthesis were induced mainly by Cl− ions accumulated in the spirea leaves. S. thunbergii was the most sensitive species; it had high mortality and low visual quality at both salinity levels. Spiraea japonica, S. nipponica, and S. betulifolia were relatively more tolerant and had good visual quality at elevated salinity compared with S. media and S. thunbergii. These research results are valuable for growers and landscape professionals during plant selection for nursery production using low-quality water and landscapes in salt-prone areas.


HortScience ◽  
2016 ◽  
Vol 51 (2) ◽  
pp. 197-201 ◽  
Author(s):  
Shasha Wu ◽  
Youping Sun ◽  
Genhua Niu ◽  
James Altland ◽  
Raul Cabrera

Asteraceae is one of the largest plant families with many important garden ornamental species. Salt tolerance of 10 aster perennials was evaluated in a greenhouse experiment, including the following: damianita (Chrysactinia mexicana), gregg’s mistflower (Eupatorium greggii), shasta daisy (Leucanthemum ×superbum ‘Becky’), blackfoot daisy (Melampodium leucanthum), lavender cotton (Santolina chamaecyparissus), aromatic aster (Symphyotrichum oblongifolium), copper canyon daisy (Tagetes lemmonii), four-nerve daisy (Tetraneuris scaposa), skeleton-leaf goldeneye (Viguiera stenoloba), and zexmenia (Wedelia texana). Plants were irrigated with nutrient solution at electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solutions at EC of 5.0 or 10.0 dS·m−1 (EC 5 or EC 10) for 5 weeks. Upon termination, growth parameters, foliar salt damage, relative chlorophyll content [Soil-Plant Analysis Development (SPAD) readings], and mineral concentration were measured. Gregg’s mistflower, skeleton-leaf goldeneye, and lavender cotton were the most salt-tolerant species with less reductions in shoot dry weight (DW) in both EC 5 and EC 10. Considering the relatively severe foliar salt damage (visual quality score of 3.1 and 2.7 at EC 5; 2.4 and 1.6 at EC 10) and mortality rate (10% and 40%) in EC 10, aromatic aster and zexmenia should be avoided where poor quality water may be used for irrigation. Gregg’s mistflower and skeleton-leaf goldeneye had relatively lower leaf sodium (Na) concentrations suggesting that both species can selectively exclude Na. Damianita and the four daisies, i.e., blackfoot daisy, copper canyon daisy, four-nerve daisy, and shasta daisy, were salt sensitive as evidenced by their greater growth reduction, foliar salt damage, and high Na and chlorine (Cl) accumulation in leaves, and should be avoided in landscapes where poor quality water may be used for irrigation.


HortScience ◽  
2019 ◽  
Vol 54 (10) ◽  
pp. 1840-1846 ◽  
Author(s):  
Yuxiang Wang ◽  
Youping Sun ◽  
Genhua Niu ◽  
Chaoyi Deng ◽  
Yi Wang ◽  
...  

Ornamental grasses are commonly used in urban landscapes in Utah and the Intermountain West of the United States. The relative salt tolerance of Eragrostis spectabilis (Pursh) Steud. (purple love grass), Miscanthus sinensis Andersson ‘Gracillimus’ (maiden grass), Panicum virgatum L. ‘Northwind’ (switchgrass), and Schizachyrium scoparium (Michx.) Nash (little bluestem) were evaluated in a greenhouse. Plants were irrigated with a nutrient solution at an electrical conductivity (EC) of 1.2 dS·m–1 (control), or saline solution at an EC of 5.0 or 10.0 dS·m–1. At harvest (65 days after the initiation of treatment), P. virgatum and S. scoparium exhibited no foliar salt damage, and E. spectabilis and M. sinensis had minimal foliar salt damage when irrigated with saline solution at an EC of 5.0 dS·m–1. At an EC of 10.0 dS·m–1, P. virgatum and S. scoparium still had no foliar salt damage, but E. spectabilis and M. sinensis displayed slight foliar salt damage, with visual scores greater than 3 (0 = dead; 5 = excellent). Compared with the control, saline solution at an EC of 5.0 and 10.0 dS·m–1 reduced the shoot dry weight of all ornamental grasses by 25% and 46%, respectively. The leaf sodium (Na+) concentration of E. spectabilis, M. sinensis, P. virgatum, and S. scoparium irrigated with saline solution at an EC of 10.0 dS·m–1 increased 14.3, 52.6, 5.3, and 1.7 times, respectively, and the chloride (Cl–) concentration increased by 9.4, 11.1, 2.8, and 2.7 times, respectively. As a result of the salt-induced water deficit, plant height, leaf area, number of inflorescences and tillers, net photosynthesis rate (Pn), stomatal conductance (gS), and transpiration rate of four tested ornamental grasses decreased to some extent. Although high Na+ and Cl– accumulated in the leaf tissue, all ornamental grass species still had a good visual quality, with average visual scores greater than 3. In conclusion, all ornamental grasses showed a very strong tolerance to the salinity levels used in this research.


2003 ◽  
Vol 128 (1) ◽  
pp. 48-54 ◽  
Author(s):  
Stefania De Pascale ◽  
Celestino Ruggiero ◽  
Giancarlo Barbieri ◽  
Albino Maggio

Production of vegetable crops can be limited by saline irrigation water. The variability of crop salt tolerance under different environmental conditions requires species-specific and environment-specific field evaluations of salt tolerance. Data on field performances of vegetable crops grown on soils that have been irrigated with saline water for many years are lacking. In this study we analyzed the long-term effect of irrigation with saline water on soil properties and on responses of field-grown pepper (Capsicum annuum L.) plants in these soils. Yield, gas exchanges, water relations, and solute accumulation were measured in plants grown under three different irrigation treatments: a nonsalinized control (ECw = 0.5 dS·m-1) and two concentrations of commercial sea salt, corresponding to ECw of 4.4 and 8.5 dS·m-1, respectively. In addition, a nonwatered drought stress treatment was included. Irrigation water with an EC of 4.4 dS·m-1 resulted in 46% reduction in plant dry weight (leaves plus stem) and 25% reduction in marketable yield. Increasing the electrical conductivity of the irrigation water to 8.5 dS·m-1 caused a 34% reduction in plant dry weight and a 58% reduction in marketable yield. Leaf and root cellular turgor and net CO2 assimilation rates of leaves in salt-stressed plants decreased along with a reduction in leaf area and dry matter accumulation. High concentrations of Na+ and Cl- in the irrigation water did not significantly alter the level of K+ in leaves and fruit. In contrast, drought stressed plants had higher concentrations of leaf K+ compared to well watered control plants. These results indicate that Na+ and K+ may play similar roles in maintaining cellular turgor under salinity and drought stress, respectively. The regulation of ion loading to the shoots was most likely functionally associated with physiological modifications of the root/shoot ratio that was substantially smaller in salinized vs. drought stressed plants. From an agronomic perspective, irrigation with moderately saline water (4.4 dS·m-1) it is recommendable, compared to no irrigation, to obtain an acceptable marketable yield in the specific environment considered.


2018 ◽  
Vol 28 (2) ◽  
pp. 166-171 ◽  
Author(s):  
Youping Sun ◽  
Genhua Niu ◽  
Christina Perez ◽  
H. Brent Pemberton ◽  
James Altland

Marigolds (Tagetes sp.) are ornamental plants with fine-textured, dark green foliage, and yellow, orange, or bicolored flowers. The relative salt tolerance of eight marigolds [‘Discovery Orange’, ‘Discovery Yellow’, ‘Taishan Gold’, ‘Taishan Orange’, and ‘Taishan Yellow’ african marigold (Tagetes erecta); ‘Hot Pak Gold’, ‘Hot Pak Orange’, and ‘Hot Pak Yellow’ french marigold (Tagetes patula)] was evaluated in a greenhouse experiment. Plants were irrigated weekly with nutrient solution at an electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solutions at an EC of 3.0 or 6.0 dS·m−1 (EC 3 or EC 6). Marigold plants began to show foliar salt damage (leaf burn and necrosis) at 6 weeks after the initiation of treatment. At harvest (9 weeks after the initiation of treatment), ‘Discovery Orange’, ‘Discovery Yellow’, ‘Taishan Gold’, and ‘Taishan Yellow’ plants exhibited severe foliar salt damage with visual scores less than 2 (on a scale of 0 to 5, with 0 = dead and 5 = excellent with no foliar salt damage) in EC 6. In the same treatment, ‘Hot Pak Gold’ and ‘Taishan Orange’ plants all died and only one of nine ‘Hot Pak Orange’ and ‘Hot Pak Yellow’ plants survived. In EC 3, all cultivars had slight or minimal foliar salt damage with visual scores ≈4 with the exception of Taishan Gold and Taishan Orange plants that showed moderate foliar damage with a visual score of 2.3 and 2.1, respectively. Treatment EC 3 reduced the flower number of ‘Discovery Orange’, ‘Discovery Yellow’, ‘Hot Pak Gold’, and ‘Hot Pak Yellow’ by 52%, 28%, 50%, and 30%, respectively, whereas EC 6 decreased the flower number of ‘Discovery Orange’ and ‘Discovery Yellow’ by 48% and 52%, respectively. In addition, both EC 3 and EC 6 did not reduce total dry weight (DW) of any cultivars, except Hot Pak Yellow and Taishan Yellow. In conclusion, all marigold cultivars are moderately sensitive to salt. ‘Discovery Orange’, ‘Taishan Yellow’, ‘Discovery Yellow’, and ‘Taishan Gold’ were more tolerant than ‘Hot Pak Gold’, ‘Hot Pak Orange’, ‘Hot Pak Yellow’, and ‘Taishan Orange’.


Sign in / Sign up

Export Citation Format

Share Document