scholarly journals Physiological and Biochemical Responses of Two Herbaceous Peony Cultivars to Drought Stress

HortScience ◽  
2019 ◽  
Vol 54 (3) ◽  
pp. 492-498 ◽  
Author(s):  
Qi Wang ◽  
Rui Zhao ◽  
Qihang Chen ◽  
Jaime A. Teixeira da Silva ◽  
Liqi Chen ◽  
...  

Herbaceous peony is a perennial flowering plant with strong environmental adaptability and may be a good candidate for culture in arid areas. In this study, the physiological and biochemical responses of two herbaceous peony cultivars to different soil moisture gradients in pots were assessed by analyzing changes in 13 stress-related indices. The drought damage index (DDI) and the contents of malondialdehyde (MDA), soluble sugar, proline, and abscisic acid (ABA) generally increased as drought stress intensified, whereas leaf relative water content (LRWC) decreased, and the contents of soluble protein, indole-3-acetic acid (IAA), the ratio of IAA and ABA, and the activities of four antioxidant enzymes fluctuated. For the leaves, a positive correlation was found between DDI and superoxide dismutase (SOD), MDA, soluble sugar, proline, ascorbate peroxidase (APX), and ABA, but it was negatively correlated with LRWC, peroxidase (POD), and catalase (CAT). In fibrous roots, DDI was positively correlated with MDA, soluble sugar, proline, soluble protein, and ABA but was negatively correlated with SOD, CAT, APX, and IAA/ABA. Principal component analysis and subordinate functions were used to evaluate drought resistance of the two cultivars, with ‘Karl Rosenfield’ showing greater resistance to drought than ‘Da Fu Gui’.

2018 ◽  
Vol 5 (03) ◽  
Author(s):  
ARADHNA KUMARI ◽  
IM KHAN ◽  
ANIL KUMAR SINGH ◽  
SANTOSH KUMAR SINGH

Poplar clone Kranti was selected to assess the morphological, physiological and biochemical responses under drought at different levels of water stress, as it is a common clone used to be grown in Uttarakhand for making paper and plywood. The cuttings of Populus deltoides L. (clone Kranti) were exposed to four different watering regimes (100, 75, 50 and 25% of the field capacity) and changes in physiological and biochemical parameters related with drought tolerance were recorded. Alterations in physiological (i.e. decrease in relative water content) and biochemical parameters (i.e. increase in proline and soluble sugar content and build-up of malondialdehyde by-products) occurred in all the three levels of water stress, although drought represented the major determinant. Drought treatments (75%, 50% and 25% FC) decreased plant height, radial stem diameter, harvest index, total biomass content and RWC in all the three watering regimes compared to control (100% FC). Biochemical parameters like proline, soluble sugar and MDA content increased with severity and duration of stress, which helped plants to survive under severe stress. It was analyzed that for better wood yield poplar seedlings should avail either optimum amount of water (amount nearly equal to field capacity of soil) or maximum withdrawal up to 75% of field capacity up to seedling establishment period (60 days). Furthermore, this study manifested that acclimation to drought stress is related with the rapidity, severity, and duration of the drought event of the poplar species.


ISRN Agronomy ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Ana Furlan ◽  
Analía Llanes ◽  
Virginia Luna ◽  
Stella Castro

Drought stress is one of the most important environmental factors that regulate plant growth and development and limit its production. Peanut (Arachis hypogaea L.) is an agriculturally valuable plant with widespread distribution in the world serving as a subsistence food crop as well as a source of various food products. The aims of this work were to evaluate growth and nodulation as well as some physiological and biochemical stress indicators in response to drought stress and subsequent rehydration in the symbiotic association peanut-Bradyrhizobium sp. SEMIA6144. Drought stress affected peanut growth reducing shoot dry weight, nodule number, and dry weight as well as nitrogen content, but root dry weight increased reaching a major exploratory surface. Besides, this severe water stress induced hydrogen peroxide production associated with lipid and protein damage; however, the plant was able to increase soluble sugar and abscisic acid contents as avoidance strategies to cope with drought stress. These physiological and biochemical parameters were completely reversed upon rehydration, in a short period of time, in the symbiotic association peanut-Bradyrhizobium sp. Thus, the results provided in this work constitute the initial steps of physiological and biochemical responses to drought stress and rehydration in this nodulated legume.


2018 ◽  
Vol 143 (3) ◽  
pp. 226-234 ◽  
Author(s):  
Yun-Peng Zhong ◽  
Zhi Li ◽  
Dan-Feng Bai ◽  
Xiu-Juan Qi ◽  
Jin-Yong Chen ◽  
...  

To select resistant germplasm resources and understand the growth and physiological responses of kiwifruit (Actinidia sp.) to drought stress, five species, Actinidia macrosperma (Acma), Actinidia longicarpa (Aclo), Actinidia deliciosa (Acde), Actinidia hemsleyana (Ache), and Actinidia valvata (Acva), were assessed under tissue culture conditions. Rootless seedlings of five species were cultured in a medium containing polyethylene glycol [PEG (formula weight 8000)] to induce drought stress (0%, 5%, 10%, 15%, and 20%). After a 30-day culture, three growth indices [fresh weight (FW), plant height (PLH), and leaf number (LN)] and six physiological indices were determined, and the drought damage index (DDI) was determined. The DDIs of five species increased, and three growth indices decreased with increasing PEG concentrations. The following changes were observed under 20% PEG treatment conditions: superoxide dismutase (SOD) activities increased significantly in Acma, Aclo, and Ache specimens; peroxidase (POX) activities remained stable in Acde, Ache, and Acva specimens; and catalase (CAT) activities increased sharply in Acma and Acva. Furthermore, the results indicated that soluble sugar (SS) content increased slightly in Acma, Aclo, Acde, and Ache but it decreased in Acva specimens. Proline (PRO) content increased significantly in Acma and Acva, and malondialdehyde (MDA) contents tended to increase under drought stress in all five species. Principal component analysis (PCA) results indicated that the order of drought tolerance in the five genotypes examined in this study under tissue culture conditions was as follows: Acma > Acva > Acde > Aclo > Ache. Therefore, we concluded that Acma and Acva are more resilient germplasm resources that represent promising kiwifruit-breeding materials. Furthermore, tolerance to drought stress in these species should be further investigated under orchard conditions.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1349
Author(s):  
Ahlam Khalofah ◽  
Mona Kilany ◽  
Hussein Migdadi

Heavy metals are primarily generated and deposited in the environment, causing phytotoxicity. This work evaluated fenugreek plants’ morpho-physiological and biochemical responses under mercury stress conditions toward Ag nanoparticles and Sphingobacterium ginsenosidiumtans applications. The fabrication of Ag nanoparticles by Thymus vulgaris was monitored and described by UV/Vis analysis, FTIR, and SEM. The effect of mercury on vegetative growth was determined by measuring the root and shoots length, the number and area of leaves, the relative water content, and the weight of the green and dried plants; appraisal of photosynthetic pigments, proline, hydrogen peroxide, and total phenols content were also performed. In addition, the manipulation of Ag nanoparticles, S. ginsenosidiumtans, and their combination were tested for mercury stress. Here, Ag nanoparticles were formed at 420 nm with a uniform cuboid form and size of 85 nm. Interestingly, the gradual suppression of vegetal growth and photosynthetic pigments by mercury, Ag nanoparticles, and S. ginsenosidiumtans were detected; however, carotenoids and anthocyanins were significantly increased. In addition, proline, hydrogen peroxide, and total phenols content were significantly increased because mercury and S. ginsenosidiumtans enhance this increase. Ag nanoparticles achieve higher levels by the combination. Thus, S. ginsenosidiumtans and Ag nanoparticles could have the plausible ability to relieve and combat mercury’s dangerous effects in fenugreek.


2021 ◽  
Vol 74 ◽  
Author(s):  
Piyaporn Phansak ◽  
Supatcharee Siriwong ◽  
Nantawan Kanawapee ◽  
Kanjana Thumanu ◽  
Wuttichai Gunnula ◽  
...  

Abstract Drought isa major constraint in many rainfed areas and affects rice yield. We aimed to characterize the physiological changes in rice in response to drought using Fourier transform infrared (FTIR) spectroscopy. Eighty rice landrace seedlings were subjected to drought in the greenhouse using a PEG 6000. Physiological parameters, including total chlorophyll content, relative water content, electrolyte leakage, and biochemical changes were evaluated. Based on the FTIR results, the landraces were divided into three main groups: tolerant, moderately tolerant, and susceptible. Principal component analysis revealed spectral differences between the control and drought stress treatment groups. Lipid, pectin, and lignin content increased after drought stress. The biochemical components of plants at different drought tolerance levels were also compared. The lipid (CH2 and CH3), lignin (C=C), pectin (C=O), and protein (C=O, N–H) contents were the highest in the drought-tolerant cultivars, followed by the moderately tolerant and susceptible cultivars, respectively. Cultivar 17 and 49 were the most tolerant, and the functional groups were identified and characterized using FTIR. Overall, these results will be useful in selecting parental cultivars for rice breeding programs.


2014 ◽  
Vol 34 (7) ◽  
pp. 778-786 ◽  
Author(s):  
V. Granda ◽  
C. Delatorre ◽  
C. Cuesta ◽  
M. L. Centeno ◽  
B. Fernandez ◽  
...  

2013 ◽  
Vol 33 (12) ◽  
pp. 3648-3656 ◽  
Author(s):  
吴芹 WU Qin ◽  
张光灿 ZHANG Guangcan ◽  
裴斌 PEI Bin ◽  
方立东 FANG Lidong

Sign in / Sign up

Export Citation Format

Share Document