scholarly journals Urea Ammonium Nitrate Additive and Raking Improved Mesotrione Efficacy on Creeping Bentgrass

2011 ◽  
Vol 21 (1) ◽  
pp. 41-45 ◽  
Author(s):  
Lijuan Xie ◽  
Deying Li ◽  
Wenjuan Fang ◽  
Kirk Howatt

Selective control of creeping bentgrass (Agrostis stolonifera) is desirable when it has escaped into other turfgrasses. The objective of this study was to evaluate the influence on creeping bentgrass control from adding urea ammonium nitrate (UAN) to mesotrione plus non-ionic surfactant (NIS) spray solution, and raking to remove dead tissues of creeping bentgrass. A 2-year field study was conducted with a split-plot design, where raking was the whole plot treatment and herbicide was the sub-plot treatment. Herbicide treatments included application of mesotrione at 56 and 70 g·ha−1 singly and sequentially with 0.25% (v/v) NIS or 0.25% (v/v) NIS plus 2.5% (v/v) UAN solution. Sequential applications were made three times on a 2-week interval. Removing the dead clippings by raking improved the creeping bentgrass control from 60% to 73% averaged over rates, timings, adjuvants, and years. Adding UAN to NIS plus mesotrione improved creeping bentgrass control from 78% to 98% with three sequential applications at 70 g·ha−1.

1996 ◽  
Vol 10 (1) ◽  
pp. 121-126 ◽  
Author(s):  
Robert J. Starke ◽  
Karen A. Renner

Velvetleaf control and sugarbeet response to POST triflusulfuron applied alone and in combination with desmedipham plus phenmedipham, nonionic surfactant, and urea ammonium nitrate (50:50) were evaluated in the greenhouse (velvetleaf only) and field. In a second field study, the effect of POST applications of triflusulfuron, desmedipham plus phenmedipham, ethofumesate, endothall, or combinations of these herbicides on sugarbeet root yield and quality was determined in the absence of weeds. Triflusulfuron controlled velvetleaf only when nonionic surfactant (NIS) was added to the spray solution. Desmedipham plus phenmedipham plus triflusulfuron gave greater velvetleaf control than triflusulfuron in the absence of NIS in the field. However, adding desmedipham plus phenmedipham to triflusulfuron plus NIS decreased velvetleaf control in the greenhouse. Adding desmedipham plus phenmedipham to triflusulfuron plus NIS increased visible sugarbeet response compared to triflusulfuron plus nonionic surfactant or desmedipham plus phenmedipham 14 d after the last POST application in 1994. In the absence of weeds, POST herbicide applications that included triflusulfuron did not reduce sugarbeet root yield more than other POST herbicides.


2004 ◽  
Vol 22 (4) ◽  
pp. 213-216
Author(s):  
T.D. Carson ◽  
B.P. Horgan ◽  
D.B. White

Abstract The ability to selectively control a specific cool-season grass growing in a mixed stand would offer great advantages to turfgrass managers. It is common for monostands of creeping bentgrass (Agrostis stolonifera) to become infested with annual bluegrass (Poa annua). Conversely, monostands of ‘True Putt’ creeping bluegrass (Poa annua var. reptans), a commercially available perennial biotype of Poa annua, often develop bentgrass infestations. The objective of this study was to evaluate the efficacy of various herbicides for the selective control of bentgrass with minimal injury to True Putt. Nine herbicide treatments were applied to 248 cm2 (38.4 in2) plugs maintained at 1.3 cm (0.51 in) in the greenhouse. The experiment was conducted twice during the winter of 2001–2002. Several ratings were made over the four week period on quality of bentgrass and creeping bluegrass and on reduction of bentgrass cover. Vantage, Image, Assure II, Fusilade II, Finale, and Balance Pro gave a minimum of 65% control with Vantage, Assure II, Fusilade II, and Finale achieving 100% control. However, Vantage was the only herbicide that provided complete control of bentgrass while causing no significant reduction in the quality of True Putt creeping bluegrass. Assure II and Fusilade II also provided complete control of bentgrass, but both had a negative impact on the quality of True Putt.


1997 ◽  
Vol 11 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Phillip W. Stahlman ◽  
Randall S. Currie ◽  
Mosad A. El-Hamid

A three-year field study in west-central Kansas investigated the effects of combinations of spray carrier, nonionic surfactant (NIS), triasulfuron, and/or 2,4-D on winter wheat foliar injury and grain yield. Herbicides applied in water without NIS caused little or no foliar injury in two of three years. Urea-ammonium nitrate (UAN) at 112 L/ha (40 kg N/ha) alone or as a carrier for herbicides caused moderate to severe foliar injury in all three years. Adding NIS to UAN spray solutions increased foliar injury, especially with the tank mixture of triasulfuron + 2,4-D. Effects of triasulfuron + NIS or 2,4-D applied in UAN were additive. Foliar injury was related inversely to temperature following application. Foliar injury was most evident 4 to 7 d after application and disappeared within 2 to 3 wk. Diluting UAN 50% with water lessened foliar injury in two of three years, especially in the presence of NIS, regardless of whether herbicides were in the spray solution. Treatments did not reduce wheat grain yield in any year despite estimates of up to 53% foliar injury one year.


2006 ◽  
Vol 96 (3) ◽  
pp. 248-254 ◽  
Author(s):  
John E. Kaminski ◽  
Peter H. Dernoeden

Dead spot (Ophiosphaerella agrostis) is a damaging disease of young ≤6 years old) creeping bentgrass (Agrostis stolonifera) golf greens. The objectives of this 3-year field study were to determine the peak periods of dead spot activity based on increasing patch diameter and pseudothecia development, and to determine where O. agrostis overwinters. Patch diameter generally increased at a linear rate between mid-June and early August. Increases in pseudothecia production closely followed increasing patch diameter. Pseudothecia could be found within necrotic tissue as early as the first day of symptom expression and as many as 478 pseudothecia were found in a single patch. Periods of rapid dead spot development coincided with air and soil temperatures ranging from 22 to 26°C. Increases in patch diameter and pseudothecia development were negligible after late August. Dead spot severity was highest in the year following green construction or fumigation, but then rapidly declined in severity in subsequent years. O. agrostis was capable of overwintering as pseudothecia or as hyphae within or on bentgrass leaf sheaths, crowns, roots, and especially the nodes of stolons.


HortScience ◽  
2008 ◽  
Vol 43 (7) ◽  
pp. 2186-2190 ◽  
Author(s):  
Peter H. Dernoeden ◽  
Steven J. McDonald ◽  
John E. Kaminski

Establishing creeping bentgrass [Agrostis stolonifera L. (CBG)] and perennial ryegrass [Lolium perenne L. (PRG)] from seed can be hampered by competition from annual bluegrass (Poa annua L.). Bispyribac-sodium (BPS) is a postemergence annual bluegrass herbicide that may have applications for use when establishing these grasses. This field study was undertaken to determine if BPS could be applied safely to CBG and PRG seedlings. Ethofumesate (ETHO) was applied sequentially (840 + 840 g·ha−1 a.i.) and served as a standard. In 2004, BPS was applied once (49, 74, 111, and 148 g·ha−1 a.i.) or sequentially (49 + 49 and 74 + 74 g·ha−1 a.i.) to CBG and PRG seedlings 4 weeks after emergence in Maryland. In 2004, BPS discolored CBG and PRG and reduced PRG cover, whereas ETHO reduced CBG cover but was not injurious to PRG. In 2005, a single (148 g·ha−1 a.i.) and sequential (25 + 25, 49 + 49 and 74 + 74 g·ha−1 a.i.) applications of BPS were made to CBG and PRG 2 and 4 weeks after seedling emergence (WASE) in Maryland and Connecticut. Treatments applied 2 WASE generally resulted in more injury when compared with applications made 4 WASE. In Maryland in 2005, CBG only sustained long-term loss of cover when treated 2 WASE with 148 g·ha−1 a.i. of BPS. The PRG was more sensitive to BPS and 148 g·ha−1 a.i. applied once and sequential treatments 49 g·ha−1 a.i. or greater applied 2 and 4 WASE generally caused the greatest loss in PRG cover. Conversely, CBG was severely injured by all BPS treatments and ETHO in Connecticut. In PRG, only 25 + 25 g·ha−1 a.i. of BPS and ETHO in both timings did not cause a loss in cover in Connecticut or Maryland. High levels of precipitation and probably other unknown factors may have enhanced the phytotoxicity observed in Connecticut. Ethofumesate generally was safer than BPS for use on PRG seedlings.


HortScience ◽  
2010 ◽  
Vol 45 (2) ◽  
pp. 288-292 ◽  
Author(s):  
James M. Rutledge ◽  
Daniel V. Weisenberger ◽  
Zachary J. Reicher

Controlling mature roughstalk bluegrass (Poa trivialis L.; RSBG) using bispyribac–sodium (BYS) or sulfosulfuron (SUL) often yields inconsistent results. Attempting to control RSBG shortly after emergence may eliminate or reduce it with fewer inputs and less noticeable creeping bentgrass (Agrostis stolonifera L.; CBG) phytotoxicity than if treated at maturity. The objective of these studies was to determine whether BYS or SUL controls seedling RSBG with only minimal seedling CBG cover reduction. Four separate studies on either CBG or RSBG were conducted in spring or fall of 2007 and repeated in 2008 to simulate spring or fall fairway establishment. Studies were arranged as split plots with application timing (7, 14, 21, or 28 days after CBG emergence) as main plots and subplots were herbicide treatments in a 2 × 5 factorial with BYS or SUL applied once at five uniformly increasing rates of 0, 18, 37, 55, and 74 g·ha−1 a.i. and 0, 6, 13, 19, and 26 g·ha−1 a.i., respectively. Plots were maintained at 1.3 cm and emergence was defined as ≈50% of the study area being populated with one- to two-leaf CBG seedlings. Spring-seeded stands of CBG were safely treated with BYS 14 or more days after emergence (DAE) at 55 g·ha−1 a.i. or less, whereas SUL was not safe by 28 DAE at any tested rate. Fall-seeded CBG was generally less sensitive to BYS and SUL. Sulfosulfuron resulted in excessive damage if applied to seedling CBG before 14 DAE at rates greater than 6 g·ha−1 a.i. and if applied before 21 DAE at rates greater than 26 g·ha−1. Bispyribac–sodium was safely applied as soon as 7 DAE at rates of 74 g·ha−1 a.i. or less. Chemical names used: {2,6-bis[(4,6-dimethoxypyrimidin-2-yl)oxy] benzoic acid} (bispyribac–sodium); {1-[4,6-dimethoxypyrimidin-2-yl]-3-[2-ethanesulfonyl-imidazo(1,2-a)pyridine-3-yl) sulfonyl]urea} (sulfosulfuron).


1990 ◽  
Vol 4 (3) ◽  
pp. 620-624 ◽  
Author(s):  
B. Clifford Gerwick ◽  
Lisa D. Tanguay ◽  
Frank G. Burroughs

The effect of urea ammonium nitrate (UAN) on the antagonism of sethoxydim, haloxyfop, or the methyl ester of haloxyfop activity by bentazon was evaluated in greenhouse and field trials on yellow and giant foxtail. Including UAN in the spray solution in the absence of bentazon did not enhance the activity of any of the three grass herbicides. However, adding UAN to sethoxydim or haloxyfop in the presence of bentazon decreased the bentazon antagonism of grass activity. Conversely, UAN increased bentazon antagonism of the activity of haloxyfop methyl ester. The differential effect of UAN was not linked to effects on spray solution pH.


HortScience ◽  
2003 ◽  
Vol 38 (4) ◽  
pp. 607-612 ◽  
Author(s):  
Peter H. Dernoeden ◽  
Cale A. Bigelow ◽  
John E. Kaminski ◽  
John M. Krouse

Smooth crabgrass [Digitaria ischaemum (Schreber) Schreber ex Muhlenb.] is an invasive weed of cool-season turfgrasses. Previous research has demonstrated that quinclorac is an effective postemergence herbicide for crabgrass control, but performance has been erratic in some regions. Furthermore, quinclorac may elicit objectionable levels of discoloration in creeping bentgrass (Agrostis stolonifera L.). The objectives of this 3-year field study were to determine optimum rates and timings of quinclorac applications that provide consistent levels of effective crabgrass control and to assess creeping bentgrass quality responses to quinclorac. To evaluate crabgrass control, quinclorac was applied in early-, mid- and late-postemergence timings at various rates to a perennial ryegrass (Lolium perenne L.) turf. Similar treatments were applied to creeping bentgrass to determine if application timing and rate influenced the level and duration of discoloration. Quinclorac was applied alone or was tank-mixed with either urea (N at 6.1 kg·ha-1) or chelated iron (Fe)+nitrogen (N) (FeSO4 at 1.1 kg·ha-1+N at 2.2 kg·ha-1) to determine if they would mask discoloration. Crabgrass control generally was more effective in the early- and midpostemergence application timings. A single application of quinclorac (0.84 kg·ha-1) was effective where crabgrass levels were moderate, but sequential (i.e. multiple) applications were required where crabgrass levels were severe. The most consistent level of crabgrass control where weed pressure was severe occurred with three, sequential quinclorac (0.37 or 0.42 kg·ha-1) applications. Creeping bentgrass exhibited 2 to 11 weeks of unacceptable discoloration in response to sequential quinclorac applications. Chelated Fe+N was more effective than urea in masking discoloration. In general, chelated Fe+N tank-mixed with quinclorac masked discoloration and turf had quality equivalent to untreated bentgrass on most, but not all rating dates. Chemical names used: 3,7,-dichloro-8-quinolinecarboxylic acid (quinclorac).


Weed Science ◽  
2007 ◽  
Vol 55 (5) ◽  
pp. 399-405 ◽  
Author(s):  
Clifford H. Koger ◽  
Darrin M. Dodds ◽  
Daniel B. Reynolds

Bispyribac is registered for postemergence control of broadleaf, sedge, and grass weeds in rice. Bispyribac inhibits the acetolactate synthase enzyme in sensitive plants. Herbicides in this class of chemistry require a spray adjuvant to achieve optimal efficacy, often achieve different levels of weed control according to the spray adjuvant used, and typically have rainfast periods of at least 6 to 8 h. Efficacy and rainfastness of bispyribac can be affected by spray adjuvant and the addition of urea ammonium nitrate (UAN). Greenhouse experiments were conducted to investigate the effect of spray adjuvant type, addition of UAN, and soil moisture on bispyribac efficacy on barnyardgrass. Control of barnyardgrass was improved when UAN was added to bispyribac at 0.4 or 0.8 g ha−1plus an organosilicone-based nonionic surfactant (OSL/NIS) or methylated seed oil/organosilicone (MSO/OSL) spray adjuvant. The type of adjuvant added to the spray solution affected bispyribac efficacy on barnyardgrass. The addition of UAN decreased the rainfast period from 8 h (registered rainfast period) to 1 or 4 h (99 to 100% control) when either the OSL/NIS or MSO/OSL adjuvant was applied with bispyribac, respectively. Applying UAN and OSL/NIS or MSO/OSL adjuvant with bispyribac enhanced efficacy and reduced the time period required between bispyribac application and washoff during a rainfall event. Increasing soil moisture conditions resulted in greater efficacy from bispyribac when applied with and without UAN.


2019 ◽  
Vol 99 (4) ◽  
pp. 395-405 ◽  
Author(s):  
Ahmed A. Lasisi ◽  
Olalekan O. Akinremi ◽  
Darshani Kumaragamage

N-(n-Butyl)thiophosphoric triamide (NBPT) has been reported to reduce ammonia volatilization from surface-applied urea and urea ammonium nitrate (UAN). A new NBPT formulation (ARM U™, 18% NBPT) that contains a polymer allowing for lower application rate of NBPT was evaluated for its efficacy relative to Agrotain® (30% NBPT) and Arborite® (24% NBPT). Trials consisted of (i) a greenhouse study that compared two rates of ARM U-treated urea (360 and 540 mg NBPT kg−1 urea) with Arborite- or Agrotain-treated urea (480 and 600 mg NBPT kg−1 urea, respectively) and (ii) a field study that compared urea and UAN treated with either ARM U (360 mg NBPT kg−1 urea) or Agrotain (600 mg NBPT kg−1 urea) at two sites. Static chambers fitted with acid-charged discs were used to measure ammonia volatilization at six or seven dates over 28 d. In the greenhouse study, ammonia volatilization was reduced by 96% with either ARM U or Agrotain and 95% with Arborite. In the field study, ARM U and Agrotain reduced ammonia volatilization from urea by 80% and 66%, respectively, across sites. Similarly, ammonia volatilization from UAN was reduced by 46% and 60% with ARM U and Agrotain, respectively. Despite the lower NBPT application rates with ARM U, ammonia reduction by ARM U, Agrotain, and Arborite was not significantly different. The addition of ARM U to urea and UAN enabled lower application rate of NBPT without compromising its efficacy.


Sign in / Sign up

Export Citation Format

Share Document