scholarly journals Postharvest Response of Winter Squash to Hot-water Treatment, Temperature, and Length of Storage

1994 ◽  
Vol 4 (3) ◽  
pp. 253-255 ◽  
Author(s):  
Rosa Marina Arvayo-Ortiz ◽  
Sergio Garza-Ortega ◽  
Elhadi M. Yahia

Winter squash are grown in northwestern Mexico for export to distant markets. During transport, fruits deteriorate and develop fungal rots. Squash (Cucurbita maxima Duch. `Delica') was given hot-water dips at 50C for 0, 3, 6, 9, and 12 min and stored at 10 and 20C with 75% RH for 4, 8, and 12 weeks. The highest weight loss (11.3%) was in fruits without hot water treatment stored at 20C for 12 weeks—weight losses were 3.6%, 7.2%, and 10.2% in the 4-, 8-, and 12-week storage periods, respectively. At 10C, the weight losses were 3.4%, 6.8%, and 7.6% for the same periods, respectively. ß-carotene content increased from 36.2 to 54.2 mg/100 g after 4 and 8 weeks of storage, respectively, but declined to 42.8 mg/100 g after 12 weeks. Chlorophyll content decreased as temperature and storage period increased, changing from 16.7 to 10.8 mg·liter-1 at 10 and 20C and from 16.9 to 15.8 mg·liter-1 and 8.8 mg·liter-1 at 4, 8, and 12 weeks, respectively. Fruits had decay caused by Rhizopus and Aspergillus. Weight loss, ß-carotene and chlorophyll contents, and decay were not affected by length of hot-water treatment. General appearance was better in fruits stored at 10 than at 20C.

HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 652c-652
Author(s):  
Rosa Marina Arvayo-Ortiz ◽  
Sergio Garza-Ortega ◽  
Elhadi M. Yahia

Winter squash is grown in the Northwest of Mexico for export to distant markets with risk of produce loss. A study was conducted to investigate its postharvest behavior as affected by hot water (50°C) for 0, 3. 6, 9 and 12 min, and stored at 10 or 20°C with 75% RH for 4, 8, and 12 weeks. The highest weight loss (11.35%) was in fruits without hot water treatment stored at 20°C for 12 weeks; at this temperature the weight loss was 3.65, 7.18, and 10.19% in the 4, 8 and 12 week storage period, respectively. At 10°C the weight loss was 3.41, 6.83 and 7.56% for the same period. Chlorophyll content decreased as temperature and storage period increased. β-carotene content showed no change at 10°C, but slightly increased after 8 and 12 weeks at 20°C. Fruits showed decay by Rhizopus and Aspergillus. Weight loss, chlorophyll content, and decay were not affected by length of hot water treatment. General appearance was better in fruits stored at 10°C than at 20°C.


2006 ◽  
Vol 131 (2) ◽  
pp. 209-213 ◽  
Author(s):  
Pauliina Palonen ◽  
Leena Lindén

`Maurin Makea', `Muskoka', ` Ottawa', and `Preussen' red raspberry (Rubus idaeus L.) canes were collected from the field and subjected to different hot water treatments (20, 35, 40, 45, and 50 °C) to determine if endodormancy could be removed by a near lethal stress. Estimation of days for 50% budbreak (DD50) was found useful for describing the state of bud dormancy in the samples. Bud dormancy was broken in `Ottawa' by immersing the canes in 45 °C water for 2 hours, in `Maurin Makea' by treating the canes in 40 °C water, and in `Preussen' by both 40 and 45 °C treatments. The influence of this treatment on dormancy and cold hardiness at different times of the winter was further examined using `Ottawa' raspberry. The treatment removed bud dormancy most effectively in October, when the samples were in deepest dormancy. A slight effect was observed in November, but no effect in January. During ecodormancy in February the treatment delayed budbreak. Hot water treatment reduced cold hardiness of `Ottawa' canes by 8 to 15 °C, and that of buds by 9 to 13 °C during both endo- and ecodormancy. Based on the capacity of buds and canes to reacclimate, recovery from the stress treatment was possible at temperatures ≥4 °C. Loss of cold hardiness was caused by high treatment temperature itself and was not related to breaking of dormancy in samples. This finding suggests that dormancy and cold hardiness are physiologically unconnected in raspberry.


HortScience ◽  
2009 ◽  
Vol 44 (7) ◽  
pp. 1947-1952 ◽  
Author(s):  
Liping Kou ◽  
Yaguang Luo ◽  
Wu Ding ◽  
Xinghua Liu ◽  
William Conway

Alternatives to sulfur dioxide to maintain quality of table grapes, including various combinations of rachis removal, chlorinated wash, hot water treatment, and modified atmosphere packaging, were explored in this study. Grapes were prepared by cutting off the rachis 1 to 2 mm from the fruit or by keeping the clusters intact. After initial preparation, short-stem and cluster grapes were subjected to chlorinated wash and/or hot water (45 °C, 8 min) treatment and packaged in plastic trays sealed with a gas-permeable film. The treated grapes as well as the commercially packed grapes (COM) in their original packages were stored at 5 °C for up to 4 weeks. Hot water treatment resulted in significantly (P < 0.05) higher oxygen retention and lower carbon dioxide accumulation in package headspaces, maintained a firmer texture, higher overall visual quality, lower decay rate, and lower microbial populations than other treatments or COM during the entire storage period. Grapes that were cut from the rachis and treated with hot water and chlorine maintained the highest quality for 4 weeks with the least decay among all treatments. A chlorine prewash treatment significantly (P < 0.05) reduced microbial populations on cluster grapes and maintained better overall quality. Conventional COM grapes developed dark decay and lost turgidity and were of unacceptable quality at 28 days of storage.


2015 ◽  
Vol 1087 ◽  
pp. 272-275 ◽  
Author(s):  
Ili Liyana Khairunnisa Kamardin ◽  
Ainun Rahmahwati Ainuddin

The effects of surface oxidation of etched metallic Zn foils by hot water treatment for variable times and temperature investigated. ZnO nanostructures were obtained after undergoing hot water treatment at 50°C and 90°C for 2 to 24 hours. The SEM morphology showed ZnO nanostar-like and nanoneedle-like were observed with different hot water treatment temperature. XRD analysis confirmed the existing of ZnO nanostar-like and nanoneedle-like in a hexagonal wurzite structure. Growth of peak on (002) direction confirmed ZnO crystals are columnar in shape and anisotropic with wurzite structure oriented along c-axis. On the basis of the changes in morphology and microstructure induced by hot water treatment, it is concluded that the formation of ZnO are promising at low temperature.


2019 ◽  
Vol 1 (1) ◽  
pp. 26-35
Author(s):  
Rozana Rozana ◽  
Lorine Tantalu

The treatment that is often used by farmers and persimmon collectors for local consumption in Indonesia is by immersion in quicklime (building lime) so as to produce powdery persimmon fruit that covers the color of mature persimmon fruit which is usually bright yellow to orange. This study aims to obtain the best treatment to produce persimmon according to the quality requirements desired by consumers through KOH application treatment to obtain bright and attractive colors, Hot Water Treatment (HWT) for relieving soreness and disinfecting pests, and soaking in lime solution to maintain texture fruit. The experimental design of this study was Factorial Randomized Group Design with 2 factors, namely the immersion time of hot water 46 0C (HWT) and KOH application. The first factor has three levels of treatment, namely without HWT (A1), 5 minutes (A2), and 10 minutes (A3). The second factor has two levels, namely without applying (B1) and applying KOH (B2). Quality observations include measurements of weight loss, color, hardness, and total dissolved solids. The 5-minute HWT treatment and KOH application gave a significant effect on several parameters, namely weight loss, hardness, and total dissolved solids but were unable to extend the shelf life of persimmon.


2011 ◽  
Vol 136 (6) ◽  
pp. 441-451 ◽  
Author(s):  
Sarunya Yimyong ◽  
Tatsiana U. Datsenka ◽  
Avtar K. Handa ◽  
Kanogwan Seraypheap

Effects of hot water treatment (HWT) on metabolism of mango (Mangifera indica cv. Okrong) fruit during low-temperature storage (LTS) and subsequent room temperature fruit ripening (RTFR) were examined. Mature-green ‘Okrong’ mango fruit were treated by immersing in hot (50 ± 1 °C) or ambient (30 ± 1 °C) water for 10 min, stored either at 8 or 12 °C for 15 days, followed by transfer to room temperature (30 ± 2 °C) for 5 days. Rate of ethylene production was significantly reduced by HWT during LTS and RTFR in all treatments. HWT increased catalase activity, suppressed ascorbate peroxidase activity, and had no effect on glutathione reductase activity during the ripening phase but showed a slight stimulatory effect during LTS. HWT altered RNA transcripts of manganese–superoxide dismutase, pectate lyase, β-galactosidase, and β-1,3-glucanase, which exhibited increases during LTS. RTFR of LTS fruit caused reduction in transcript levels of these genes, except pectate lyase. Total protein patterns were altered by all treatments during LTS and RTFR, but HWT arrested loss of several proteins during RTFR. Taken together, results provide strong evidence that HWT increases the storage period of mango by extending fruit shelf life through the regulation of a myriad of metabolic parameters, including patterns of antioxidant and cell wall hydrolase genes and protein expression during storage at low and ambient temperatures.


Food Research ◽  
2021 ◽  
Vol 5 (5) ◽  
pp. 186-194
Author(s):  
N.P. Minh

Pineapple (Ananas comosus) was a non-climacteric fruit popularly distributed in Vietnam and other tropical regions. It was highly preferred by great appearance, wonderful texture, special flavour and perfect nutritional value. Moreover, it was also a good source of minerals, vitamins and antioxidants beneficial for human health. In harvesting season, it was highly perishable under ambient storage due to its high metabolic and moisture content resulting in quality degradation. This research evaluated the possibility of hot water treatment to the retention of quality attributes during storage. Pineapple fruits were dipped in hot water at different times and temperatures 30/35 (as control), 50/45, 52/40, 54/35, 56/30, 58/25, 60/20, 62/15 (°C/s). They were drained for 30 mins and stored at the ambient condition at the relative humidity of 85-90% for 15 days. In 3 day-interval, these fruit groups were taken to evaluate weight loss, firmness, decay index, total soluble solids (TSS), ascorbic acid. Results showed that there was a significant difference between the control and 7 treated groups. Pineapple fruits treated by hot water at 56/30 (°C/s) showed the lowest weight loss (0.15±0.05 to 1.34±0.01%), the lowest decay index (1.03±0.02 to 1.63±0.02), the most firmness (19.43±0.00 to 18.63±0.03 N), the highest TSS (24.35±0.02 to 23.01±0.01oBx), the highest ascorbic acid content (18.59±0.01 to 17.79±0.02 mg/100 g). Application of hot water submergence provided an alternative to chemical treatment to extend pineapple stability during storage and improve its marketability in distribution


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1051E-1052
Author(s):  
Arturo Martinez-Morales ◽  
Iran Alia-Tejacal ◽  
Maria-Teresa Colinas-Leon ◽  
Victor Lopez-Martinez ◽  
Cecilio Bautista

Sapote mamey (Pouteria sapota) fruit commercialization to different markets is limited due to the fact that it is a host of the fruit fly (A. serpentina), so there is a special interest in generating a quarantine treatment protocol. In the present study, fruits from Jalpa de Mendez, Tabasco, Mexico, were harvested at physiological maturity and divided in two groups: a) fruits treated with hot water (46.1 °C) for 1 h, and b) control fruits, with no hot water treatment. Fruits were then stored at 12 °C for 7, 14, 21, and 28 days. After storage, days to ripening as well as respiration rate, ethylene production, and weight loss were evaluated for 6 days. Pulp color (ligthness, hue angle, and chroma), fruit firmness, total soluble solids and sugars, and total phenols (at the end of storage and 6 days after) were also evaluated. Results show that fruits stored for 0 days ripened in 5.8 days, while fruits stored between 7 and 28 days took between 3.2 and 5.6 days to reach the ripe stage. Considering the storage periods, effective postharvest life was increased between 11 and 32 days. Respiration rate markedly increased in control fruits after 21 days of storage, but no chilling injury symptoms were observed. Hot water treatment did not affect ethylene production, sugar or phenol content, color, and fruit firmness. Total soluble solids and sugars increased as storage period increased and even more after storage, thus suggesting that storage temperature does not stop the ripening process. No significant changes were observed in the color components. Results suggest that the hot water inmersion treatment is an alternative to reach the quarantine protocol (not affecting quality) and when combined with refrigeration could be used to sent fruit to distant places.


2021 ◽  
Vol 27 ◽  
pp. 102284
Author(s):  
Jakub Pečenka ◽  
Zuzana Bytešníková ◽  
Tomáš Kiss ◽  
Eliška Peňázová ◽  
Miroslav Baránek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document