scholarly journals Reversed Greenhouse Temperatures Alter Carbohydrate Status in Lilium longiflorum Thunb. `Nellie White'

1993 ◽  
Vol 118 (6) ◽  
pp. 736-740 ◽  
Author(s):  
William B. Miller ◽  
P. Allen Hammer ◽  
Terri I. Kirk

Commercial greenhouse operators are increasingly using “negative DIF” temperature regimes to control crop height. A negative DIF exists when greenhouse night temperature is greater than the day temperature. Large negative differences in day and night temperatures strongly suppress stem elongation in many crops. We have explored the effects of negative DIF temperature regimes on leaf, flower, and stem carbohydrate levels in Lilium longiflorum Thunb. `Nellie White'. During two growing seasons, `Nellie White' plants were grown under positive or negative DIF regimes (±5 or 8C) under prevailing daylengths, with temperatures adjusted so that daily temperature averages were equal between regimes. Plants were harvested ≈10 days after visible bud stage and at anthesis. Carbohydrates in stems, leaves, and flowers were analyzed by high-performance liquid chromatography. Compared to plants grown under positive DIF, negative DIF plants showed significantly reduced stem length and leaf and stem dry weights. Negative DIF regimes reduced leaf and stem total soluble carbohydrate (TSC) content by 39% to 46% at visible bud and anthesis, while flower TSC content was reduced by 10% to 13%.

HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 592f-592
Author(s):  
William B. Miller ◽  
P. Allen Hammer ◽  
Terri I. Kirk

Commercial greenhouse operators are increasingly using “negative DIF” temperature regimes for crop height control. A negative DIF exists where the night temperature (NT) is greater than day temperature (DT). Large differences in DT-NT strongly suppress stem elongation in many crops, and have been used to reduce labor and material costs for chemical growth regulator applications on Easter lily. We have explored some of the biochemical effects of negative DIF temperature regimes. 'Nellie White Easter lilies were grown (1989 and 1991) at Purdue under a +10 or -10 DIF regime with temperatures adjusted so that daily averages were equal. Plants were harvested at visible bud (VB) and anthesis. Carbohydrates in stems, leaves and flowers were analyzed by HPLC With both temperature regimes, timing data indicated equal daily temperature averages were achieved. Negative DIF severely reduced stem length, and leaf and stem dry weight. Negative DIF reduced leaf and stem total soluble carbohydrate (TSC) content 39-46% at VB and anthesis, while flower TSC was reduced 10-13%. These results indicate negative DIFs have potentially detrimental biochemical effects on Easter lilies. Other techniques, such as early morning temperature drops, were not a part of this study, and their physiological effects should be evaluated as well.


2000 ◽  
Vol 125 (3) ◽  
pp. 383-389
Author(s):  
Pauline Helen Kaufmann ◽  
Robert J. Joly ◽  
P. Allen Hammer

The difference between night and day temperature (DIF = day - night temperature) has been shown to affect plant height. A positive DIF (+DIF), cooler night than day temperature, increases stem elongation while a negative DIF (- DIF), warmer night than day temperature, decreases stem elongation. The physiological mechanism underlying the growth response to DIF is not understood, however, and the effects of day/night temperature differentials on root permeability to water and root elongation rate have not been studied. The objective of this study was to describe how +DIF and -DIF temperature regimes affect leaf water relations, root water flux (Jv), root hydraulic conductivity (Lp), and root elongation rates of `Boaldi' chrysanthemum [Dendranthema ×grandiflora Kitam. `Boaldi' (syn. Chrysanthemum ×morifolium Ramat.)] plants over time. Leaf turgor pressure (ψp) was 0.1 to 0.2 MPa higher in plants grown in a +6 °C DIF environment throughout both the light and dark periods, relative to those in a -6 °C DIF environment. Jv differed markedly in roots of plants grown in +DIF vs. -DIF environments. Rhythmic diurnal patterns of Jv were observed in all DIF treatments, but the relative timing of flux minima and maxima differed among treatments. Plants grown in positive DIF regimes exhibited maximum root flux at the beginning of the light period, while those in negative DIF environments had maximum root flux during the first few hours of the dark period. Plants grown in +DIF had significantly higher Lp than -DIF plants. Plants grown in +DIF and -DIF environments showed differences in the diurnal rhythm of root elongation. During the dark period, +DIF plants exhibited minimal root elongation rates, while -DIF plants exhibited maximal rates. During the light period, the converse was observed. In -DIF temperature regimes, periods of rapid root elongation coincided with periods of high Jv. Results of this study suggest that negative DIF environments lead to leaf turgor reductions and markedly alter diurnal patterns of root elongation. These changes may, in turn, act to reduce stem elongation.


1989 ◽  
Vol 69 (1) ◽  
pp. 347-349
Author(s):  
M. SENÉCAL ◽  
B. DANSEREAU ◽  
R. PAQUIN

Poinsettia (Euphorbia pulcherrima Willd ’Annette Hegg Dark Red’) were fertilized with 3.0, 4.5 or 6.0 g per 15-cm pot of Osmocote (14N-6.1P-11.6K) and were grown in greenhouses at 9, 13, or 17 °C night temperature. As the night temperature increased, the number of days to anthesis, bract number and carbohydrate levels decreased. Maximum bract mean area and minimum root dry weight were achieved at 13 °C. High fertilizer rates increased the number of days to anthesis while bract number, root and shoot dry weights, reducing and total sugar content decreased.Key words: Euphorbia pulcherrima, fertilization, night temperature, carbohydrate


1997 ◽  
Vol 122 (6) ◽  
pp. 778-783 ◽  
Author(s):  
Will G. Neily ◽  
Peter R. Hicklenton ◽  
David N. Kristie

Stem elongation rates (SERs) of `Giant Tetra' snapdragon (Antirrhinum majus L.) and `Pompon' zinnia (Zinnia violacea Cav.) were determined in three temperature regimes in which differentials had been established between day and night temperature. The differentials [expressed as day temperature - night temperature (DIF)] were +5 DIF, 21 °C day/16 °C night; 0 DIF, 18.7 °C constant; and -5 DIF, 16.5 °C day/21.5 °C night; daily average 18.7 °C. In each regimes SERs were determined for three developmental stages—vegetative, visible bud, and preanthesis. SER was measured in controlled-environment chambers under 13-hour day/11-hour night photoperiods using linear voltage displacement transducers. Snapdragon and zinnia displayed rhythmic patterns of growth with strikingly different characteristics. SER for snapdragon consisted of a large peak in growth at the day/night (D/N) transition followed by a minimum in SER at the night/day (N/D) transition. The pattern did not change through development. In contrast the SER pattern changed significantly in zinnia. At the vegetative stage, diurnal SER was dominated by a large peak after the N/D transition [an early morning peak (EMP)]. At the later growth stages, the EMP remained visible, but the proportion of growth occurring at night increased. SER was rhythmic in both species for a limited period in continuous light and constant temperature. Zinnia displayed a stronger endogenous rhythm of SER than snapdragon. In both species, only day period growth was affected by DIF. The size of EMPs in both species increased under positive DIF and decreased under negative DIF, resulting in the overall DIF effect on plant height (a progressive increase in total diurnal elongation as DIF increased from -5 to +5). Internode lengths for snapdragon and zinnia were similar for plants grown to full flower at constant 17, 20, or 23 °C (0 DIF), indicating that DIF—not average daily, night, or day temperature—is a major determinant of extension growth.


1971 ◽  
Vol 49 (2) ◽  
pp. 289-294 ◽  
Author(s):  
H. Brix

Growth of western hemlock and Douglas-fir seedlings was studied under 11 controlled day–night temperature regimes ranging from 8 to 28 °C, and with light intensities of 450 and 1000 ft-c for 100 days after seed germination. Production and distribution of dry matter, together with length and diameter of stem, were measured. Douglas fir had a broad optimum temperature for growth between 18 and 24 °C, whereas hemlock had a pronounced optimum at 18 °C, especially at high light. High temperature was more detrimental to growth of hemlock than of Douglas fir. At 28 °C, dry matter production of hemlock was 7, and of Douglas fir 40% of the maximum. Low temperature similarly affected the two plants. A constant day–night temperature regime was as good or better than alternating temperatures for both plants. Day temperature was more effective in increasing growth than night temperature. Light intensity, for most temperature regimes, had a pronounced effect on dry matter production, less on stem diameter, and little or none on stem length. Dry matter production of hemlock was considerably lower than for Douglas fir for all growing conditions.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 860F-860
Author(s):  
Giovanni D'Angelo ◽  
Piero Frangi ◽  
Pierluigi Verga

In Northern Italy, two trials have been performed on Lilium and poinsettia cultivars to control plant height by day–night temperature regimes. Two identical glasshouse compartments have been used for the experiments: one maintained at standard conditions (the same minimum and ventilation temperatures during day and night), the other with minimum day temperature lower than night. Cultivations of lilies and poinsettias started in Winter and Summer 1993, respectively, with different climate conditions (cold in winter and hot in summer). Results on Lilium indicated that a good control of greenhouse temperature can be achieved in Italy's winter climate, even on sunny days; the best height reduction (30%) was obtained on Lilium longiflorum cv. `White American', compared to other Lilium species. Test on poinsettia have been based mainly on controlling ventilation of the glasshouse to raise temperature in the first part of the night and to lower it during the first daytime hours.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 522c-522
Author(s):  
Anuradha Tatineni ◽  
Sonja L. Maki ◽  
Nihal C. Rajapakse

Interest in the use of non- (or less) chemical methods to reduce the height of ornamental crops has increased tremendously. Manipulation of greenhouse light quality is one alternative for plant growth regulation. We have shown that eliminating far-red light from the greenhouse environment with liquid CuSO4 spectral filters is effective in reducing the height of a wide range of plants though plant carbohydrate status is also altered under CuSO4 filter. In previous studies, application of GA3 reversed both the reduction of plant height and carbohydrate status of CuSO4 spectral filter grown plants. It has been proposed that GAs enhance the activity of the enzyme sucrose phosphate synthase to regulate carbohydrate levels. In the present study the role of exogenously applied GA19, GA1, and GA3 in overcoming the reduction of plant height and carbohydrate levels was investigated. Chrysanthemum plants were treated weekly for 4 weeks with saturating doses of GA19, GA1 and GA3 (25 μg) or the growth retardants paclobutrazol and prohexadione. GA1 was also applied with paclobutrazol and prohexadione to assess whether response to GAs is altered under CuSO4 filter. GA1 and GA3 promoted growth similarly under control or CuSO4 filter. GA19 was least effective in promoting growth under CuSO4 filter. In summary, these results suggest that gibberellin physiology is altered under spectral filters with the conversion of GA19 a possible point of regulation. The correlation between the carbohydrate status and the growth of the plants will be discussed.


1967 ◽  
Vol 45 (9) ◽  
pp. 1643-1651 ◽  
Author(s):  
J. Johanna Clausen ◽  
T. T. Kozlowski

Tamarack (Larix laricina (DuRoi) K. Koch) produces long shoots which bear two kinds of needles. Early needles are present in the bud and elongate rapidly after budbreak. Late needles, few of which are present in the bud, elongate later than early needles. Short shoots bear early needles only, and stem length seldom exceeds 1 mm. Seasonal changes in length and weight of needles and stems of both shoot types were measured. In long shoots, 75% of stem elongation, more than 70% of stem weight increment, and 65–70% of late needle elongation occurred after early needles were full-sized. Stem and late needle elongation ceased simultaneously, after which time needle weight decreased and stem weight increased. Early needles probably drew on food reserves while developing, and then themselves contributed to stem and late needle elongation. Final stem weight increase probably used photosynthate from both late and early needles of the current year.Shading of current and last year's needles showed that shoots in which photosynthesis was interrupted in this way produced shorter, lighter-weight stems than did control shoots.


Weed Science ◽  
2007 ◽  
Vol 55 (4) ◽  
pp. 346-351 ◽  
Author(s):  
Russ W. Gesch ◽  
Debra Palmquist ◽  
James V. Anderson

Previous evidence indicates that changes in well-defined phases of dormancy in underground adventitious buds of leafy spurge in late summer and autumn are regulated by complex sensing and signaling pathways involving aboveground sugar signals. However, little information exists concerning seasonal photosynthesis and carbohydrate partitioning of leafy spurge, although such information would help to elucidate the involvement of sugar in controlling bud dormancy. An outdoor study was conducted over two growing seasons to determine and model seasonal patterns of photosynthesis and aboveground carbohydrate partitioning and their relationship to underground adventitious bud carbohydrate status. Photosynthesis and total nonstructural carbohydrate (TNC) content of aboveground tissues was greatest during vegetative growth. Photosynthesis gradually declined over the growing season, whereas TNC decreased sharply during flowering, followed by a gradual decline between midsummer and autumn. Leaf starch increased dramatically to midsummer before declining sharply throughout late summer and early autumn, whereas sucrose content responded inversely, indicating a mobilization of starch reserves and export of sugars to overwintering belowground sink tissues. Because newly formed underground adventitious buds showed a continuous increase in TNC from midsummer through autumn, export of sugars from aboveground tissues likely contributed to the increase in TNC. These results may facilitate new strategies for biological control of leafy spurge.


Sign in / Sign up

Export Citation Format

Share Document