scholarly journals Whole-plant Net CO2 Exchange of Raspberry as Influenced by Air and Root-zone Temperature, CO2 Concentration, Irradiation, and Humidity

1996 ◽  
Vol 121 (5) ◽  
pp. 838-845 ◽  
Author(s):  
David C. Percival ◽  
J.T.A. Proctor ◽  
M.J. Tsujita

The influence of irradiance, CO2, and temperature on whole-plant net CO2 exchange rate (NCER) of Rubus idaeus L. `Heritage' micropropagated raspberries was examined. Within the set of environmental conditions examined, irradiation was the most important factor, accounting for 58% of the whole-plant irradiance/CO2 concentration/temperature NCER model variation, followed by CO2 concentration (28%) and temperature (2.5%). Net photosynthesis (Pn) required irradiance levels >600 μmol·m-2·s-1 PPF for saturation, greatly increased under CO2 enrichment (up to 1500 μL·L-1), and was optimum at a whole-plant temperature of 20 °C. Temperature effects were partitioned in an experiment using varying air and root-zone temperatures (15, 20, 25, 30, and 35 °C) under saturated light and ambient CO2 levels (350 μL·L-1). Air and root-zone temperature influenced Pn, with maximum rates occurring at an air × root-zone temperature of 17/25 °C. The contribution of air and root-zone temperature to the NCER model varied, with air and root-zone temperature contributing 75% and 24%, respectively, to the total model variation (R2 = 0.96). Shoot dark respiration increased with air and root-zone temperature, and root respiration rates depended on air and root-zone temperature and shoot assimilation rate. Humidity also influenced Pn with a saturated vapor pressure deficit threshold >0.25 kPa resulting in a Pn decrease. Quantifying the physiological response of raspberries to these environmental parameters provides further support to recent findings that cool shoot/warm root conditions are optimum for raspberry plant growth.

1998 ◽  
Vol 123 (4) ◽  
pp. 518-523 ◽  
Author(s):  
David C. Percival ◽  
J.T.A. Proctor ◽  
J.A. Sullivan

Field experiments including supplementary trickle irrigation (IR), IRT-76 plastic film (PF), and straw mulch (STR) treatments were conducted during 1993 and 1994 to determine the influence of root-zone temperature and soil moisture status on carbon assimilation and dry mass distribution, and soil and plant nutrient content, during the establishment of Rubus idaeus L. `Heritage' primocane-fruiting raspberries. The IR, PF, and STR treatments were reapplied after the 1993 establishment year to examine their effects on an established, hedgerow planting. Physical environment, vegetative and reproductive data were collected. PF increased root and shoot mass, total flower number, and total berries harvested. Maximum leaf net photosynthetic (Pn) rates were observed under cool air temperatures and root-zone temperature of 25 °C. Field Pn measurements indicated that there was no seasonal decline in Pn. Mulch treatments however, were not beneficial to the established (i.e., 2-year-old) hedgerow planting. The root system of the 2-year-old planting was largely confined to an area within the foliage wall and also at a greater depth from the mulch treatments. Therefore, beneficial effects of mulch management on the growth and development of raspberries may be limited to the establishment year.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 460b-460
Author(s):  
Melita Marion Biela ◽  
Gail R. Nonnecke ◽  
William R. Graves ◽  
Harry T. Horner

Root-zone temperature (RZT) effects were studied to determine physiological changes on whole-plant and microscopic levels of strawberry (Fragaria ×ananassa) growth and development. A greenhouse experiment was conducted in 1997 with `Tristar' day-neutral strawberry using a randomized complete-block design with three RZT treatments (23, 29, and 35 °C) and four replications. The total number of flowers was less in plants subjected to 35 °C. Total weight of fruit yield was highest at 29 °C and least at 23 °C, due possibly to later fruit development. Fresh weight was highest in plants grown at 23 and 29 °C. Dry weight analysis showed that root and leaf growth were inhibited at 35 °C. Throughout the duration of the experiment, transpiration rates were lower in plants subjected to 35 °C. In general, plants grown under RZT of 29 °C had more optimal vegetative and reproductive growth than those grown under 23 and 35 °C.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 881E-881
Author(s):  
David C. Percival ◽  
John T.A. Proctor ◽  
M.J. Tsujita

The influence of irradiance, CO2, and temperature on whole-plant net C exchange rate (NCER) of micropropagated raspberries (Rubus idaeus L. cv. `Heritage') was examined in 1994. Irradiances >1000 μmol–m–2–s–1 PAR were required for light saturation, and net photosynthesis (Pn) greatly increased under CO2 enrichment (up to 2000 μl–liter–1) and was optimum at 17C. Temperature effects were separated in another experiment using varying air and soil temperatures (15, 20, 25, 30, and 35C) under saturated light and ambient CO2 levels (350 μl–liter–1). Both air and soil temperature influenced net Pn, with maximum rates occurring at an air/soil temperature of 17/25C and each contributing 71.2% and 26.7%, respectively, to the total variation explained by a polynomial model (R2 = 0.96). Dark respiration and root respiration rates also increased significantly with elevated air and soil temperatures. Therefore, results from this study indicate that maximum net Pn occurred at an air/soil temperature of 17/25C and that irradiance, CO2 levels, and shoot and root temperatures are all important factors in examining NCER in raspberries.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1118a-1118
Author(s):  
B. Jez Lawrence ◽  
J.M. Zajicek

Root-zone temperature fluctuations and sap flow rates were characterized for several woody ornamental plants in a controlled environment using a water bath to control temperatures. Flow rates of sap in the xylem were measured every 15 seconds and averaged over 15 minute intervals. Sap flow measurements were correlated to root-zone temperatures recorded during the same time intervals. Whole plant transpiration was measured gravimetrically. Root-zone temperatures were raised from 22°C to 45°C (slightly below lethality between 9:00 am and 12:00 noon, held at that temperature until 4:00 pm, and then allowed to cool. There was a pronounced diurnal change in flow rate with peak flow during mid-morning declining in mid-afternoon. The decline in the rate of sap flow occurred at a faster rate than the decline in root-zone temperature. This diurnal flow rate was most pronounced during the first 24-hour elevated temperature cycle. Plants maintained at a constant temperature of 22°C showed no such extreme fluctuations in sap flow rate. Stomatal conductance measured with a porometer showed similar trends to whole plant transpiration.


2020 ◽  
Vol 5 (1) ◽  
pp. 317-324
Author(s):  
Kayla Snyder ◽  
Christopher Murray ◽  
Bryon Wolff

AbstractTo address agricultural needs of the future, a better understanding of plastic mulch film effects on soil temperature and moisture is required. The effects of different plant type and mulch combinations were studied over a 3.5-month period to better grasp the consequence of mulch on root zone temperature (RZT) and moisture. Measurements of (RZT) and soil moisture for tomato (Solanum lycopersicum), pepper (Capsicum annuum) and carrot (Daucus carota) grown using polyolefin mulch films (black and white-on-black) were conducted in Ontario using a plot without mulch as a control. Black mulch films used in combination with pepper and carrot plants caused similar RZTs relative to uncovered soil, but black mulch film in combination with tomato plants caused a reduction in RZT relative to soil without mulch that increased as plants grew and provided more shade. White-on-black mulch film used in combination with tomatoes, peppers or carrots led to a reduction in RZT relative to soil without mulch that became greater than the temperature of soil without mulch. This insulative capability was similarly observed for black mulch films used with tomato plants. Apart from white-on-black film used in combination with tomatoes, all mulch film and plant combinations demonstrated an ability to stabilize soil moisture relative to soil without mulch. RZT and soil moisture were generally stabilized with mulch film, but some differences were seen among different plant types.


1987 ◽  
Vol 67 (2) ◽  
pp. 409-415 ◽  
Author(s):  
A. MENKIR ◽  
E. N. LARTER

Based on the results of an earlier paper, 12 inbred lines of corn (Zea mays L.) were evaluated for emergence and seedling growth at three controlled root-zone temperatures (10, 14, and 18 °C). Low root-zone temperatures, 10 and 14 °C, were detrimental to emergence, seedling growth, and root growth of all inbred lines. Differential responses of inbred lines were observed within each temperature regime. The differences in seedling emergence among lines became smaller with increasing root-zone temperature, while the reverse was true for seedling dry weight. Simple correlation coefficients showed a significantly (P = 0.05) negative association between emergence percentage and emergence index (rate). Neither of these two emergence traits was significantly correlated with seedling dry weights. Seedling dry weights were significantly (P = 0.01) and positively associated with root dry weights. Two inbred lines exhibited good tolerance to low root-zone temperatures, viz. CO255 and RB214. A significant and positive correlation existed between emergence percentage at a root-zone temperature of 10 °C and field emergence in test with the same genotypes reported earlier. Selection at a root-zone temperature of 10 °C for a high percentage of seedling emergence, therefore, could be effective in identifying genotypes capable of germinating in cool soils. Furthermore, the significantly (P = 0.01) positive relationship between seedling dry weights at all root-zone temperatures and those from the field test suggest that strains with vigorous seedling growth in the field could be identified using low root-zone temperature regimes.Key words: Zea mays, root-zone temperature, cold tolerance


1986 ◽  
Vol 16 (4) ◽  
pp. 696-700 ◽  
Author(s):  
Chris P. Andersen ◽  
Edward I. Sucoff ◽  
Robert K. Dixon

The influence of root zone temperature on root initiation, root elongation, and soluble sugars in roots and shoots was investigated in a glasshouse using 2-0 red pine (Pinusresinosa Ait.) seedlings lifted from a northern Minnesota nursery. Seedlings were potted in a sandy loam soil and grown in chambers where root systems were maintained at 8, 12, 16, or 20 °C for 27 days; seedling shoots were exposed to ambient glasshouse conditions. Total new root length was positively correlated with soil temperature 14, 20, and 27 days after planting, with significantly more new root growth at 20 °C than at other temperatures. The greatest number of new roots occurred at 16 °C; the least, at 8 °C. Total soluble sugar concentrations in stem tissue decreased slightly as root temperature increased. Sugar concentrations in roots were similar at all temperatures. The results suggest that root elongation is suppressed more than root tip formation when red pine seedlings are exposed to the cool soil temperatures typically found during spring and fall outplanting.


Sign in / Sign up

Export Citation Format

Share Document