scholarly journals Increasing Nitrogen Concentration in Hydroponic Solutions Affects Onion Flavor and Bulb Quality

2000 ◽  
Vol 125 (2) ◽  
pp. 254-259 ◽  
Author(s):  
W.M. Randle

To test the effects of high nitrogen (N) fertilization levels on onion quality and bulb flavor, `Granex 33' onions (Allium cepa L.) were greenhouse grown in hydroponic solution culture with increasing N concentrations. Nitrogen was adjusted in the solutions with NH4NO3 and increased incrementally from 0.22 g·L-1 to 0.97 g·L-1 over five treatments. Plants were harvested at maturity and subjected to quality, flavor, and mineral analysis. As solution N increased, bulb fresh weight and bulb firmness decreased linearly. Gross flavor intensity, as measured by enzymatically developed pyruvic acid (EPY) increased linearly for N concentrations between 0.22 and 0.78 g·L-1, but EPY was reduced slightly in bulbs grown at the highest N level (0.97 g·L-1). Soluble solids content was unaffected by solution N concentration. Solution N had an affect on flavor quality. Methyl cysteine sulfoxide, which gives rise to cabbage (Brassica L. sp.) and fresh onion flavors upon eating, generally increased in concentration as solution N increased. 1-Propenyl cysteine sulfoxide, which imparts heat, mouth burn, pungency, and raw onion flavors increased between the two lowest N concentrations, and then decreased as solution N increased. Propyl cysteine sulfoxide, which imparts fresh onion and sulfur flavors upon eating, generally increased with increasing solution N concentration. Several minerals were also affected by solution N concentration. Total bulb N and NO3- increased linearly while B, Ca, and Mg decreased linearly. Total bulb S and K increased and then decreased quadratically in response to increasing solution N. Nitrogen fertility can have a pronounced affect on onion flavor and as a consequence, needs to be considered when growing onions for specific flavor quality and nutritional attributes.

HortScience ◽  
2004 ◽  
Vol 39 (6) ◽  
pp. 1416-1420 ◽  
Author(s):  
Pai-Tsang Chang ◽  
William M. Randle

Onion is classified as a salt-sensitive crop, though it is found in production on saline soils around the world. While onion flavor intensity has been studied in response to various growing conditions, little is known about its response to salt stress. To understand if NaCl affects growth, flavor development, and mineral content in onion, `Granex 33' plants were grown to maturity with six different concentrations of NaCl ranging from 0 (control) to 125 mm in nutrient solutions. NaCl affected onion fresh weight and altered onion flavor intensity and quality. Plants did not survive the 125 mm NaCl treatments and are not included in the results. As bulb Na+ and Cl- content increased in response to increasing NaCl concentrations, leaf and bulb fresh weight of mature plants decreased. Total bulb S content also decreased with increasing NaCl solution concentrations, while bulb SO42- content increasing linearly, indicating that less S was entering the S metabolic stream. Though bulb soluble solids content was not influenced by NaCl concentrations, pungency increased, but only at the highest NaCl concentration. Total flavor precursors and methyl cysteine sulfoxide content increased in response to NaCl, but only at the 100 mm treatment. 1-Propenyl cysteine sulfoxide was generally unresponsive to the salt treatment. Propyl cysteine sulfoxide content decreased then increased in responses to increasing NaCl levels, but was found as a minor flavor precursor. Peptide intermediates measured in the pathway leading to 1-propenyl cysteine sulfoxide and propyl cysteine sulfoxide decreased linearly with increasing NaCl exposure. While NaCl affected onion flavor in this study, severe reductions in growth would prevent onion production under similar saline conditions. For practical purposes, the effects of NaCl on flavor are, therefore, minimal.


HortScience ◽  
2004 ◽  
Vol 39 (6) ◽  
pp. 1255-1259 ◽  
Author(s):  
Carmen Feller ◽  
Matthias Fink

The objective was to provide results to optimize the production of table beet (Beta vulgaris L.) with respect to yield and quality. Field experiments were carried out over 2 years, where the effects of nitrogen (N) supply, sowing date, and cultivar were tested in a block design with four replications. In addition to yield, soluble solids and nitrate N contents of roots were measured to assess quality. Sowing date was an important factor for determining yield and quality of table beet. Sowing dates later than June at the experimental site are not recommended because they resulted in an increase in nitrate N content in fresh weight of up to 3027 mg·kg-1 and an average yield loss of 46% compared to sowings in April. Soluble solids content (SSC) was only slightly affected by planting date. Nitrogen supply did not affect SSC, but increasing N supply led to a major increase in nitrate N content, especially if combined with late sowing dates. It was concluded for early sowing dates that N supply be determined to achieve the maximum yield. With an early sowing date, nitrate N content in fresh weight at harvest was <563 mg·kg-1, even with a high N supply of 250 kg·ha-1. Late sowing dates required a reduced N supply to keep harvest nitrate contents below the 2500 mg·kg-1 required by the processing industry. Recommendations for optimizing N supply, sowing date, and cultivars for table beet should always take into account strong interactions between these factors.


2015 ◽  
Vol 15 (2) ◽  
pp. 177-186 ◽  
Author(s):  
Sandra Escribano ◽  
Almudena Lázaro

The study of unknown and therefore unexploited genetic material from landraces and wild relatives could be essential to help modern plant breeders to respond to ongoing requirements and new challenges in food production. The present study evaluates the most relevant physicochemical values and nutrient contents of a genetically unique array of traditional melon varieties, cultivated in Spain at least since the 19th century, and compares them with modern melon hybrids available on the market. This research is complemented with an assessment of variety, environment and repetition effects on each trait to determine their stability. Spanish melon landraces displayed extraordinary diversity with respect to juiciness (70.59–95.97 g/100 g water fresh weight), firmness (20.75–149.89 N), soluble solids content (9.57–16.53 °Brix), pH (5.04–6.38), total sugars (360.21–877.36 mg/g dry weight), carotenoids (0.01–2.05 μg/g fresh weight) and ascorbic acid values (7.55–44.33 mg/100 g fresh weight). A subset of these landraces, belonging to Piel de Sapo and Rochet market classes, revealed remarkably superior values of ascorbic acid in comparison with all commercial varieties, doubling ascorbic acid values with respect to their corresponding market class. Furthermore, most of these landraces exhibited high acidity and accumulated high levels of sugars, fulfilling those sensory and physicochemical characteristics that researchers and breeders have spent many years seeking. The possibilities of these landraces to be used in improvement projects are innumerable; they should be surely taken into account in the near future.


HortScience ◽  
1992 ◽  
Vol 27 (10) ◽  
pp. 1116-1117 ◽  
Author(s):  
William M. Randle

Twenty bulbs from each of 10 onion (AIlium cepa L.) cultivars and one mass population were harvested from two locations and evaluated for three traits associated with flavor quality. Variance components for soluble solids content (SSC), pyruvic acid concentration (PAC), and percent S were calculated, and sampling schemes required to detect specific differences among treatment means were determined. In general, a five-bulb sample and four replications were sufficient to detect desired differences for SSC and PAC, whereas percent S required a larger sample size and more replications.


2016 ◽  
Vol 38 (4) ◽  
Author(s):  
LUIZ CARLOS CHAMHUM SALOMÃO ◽  
PAULO ROBERTO CECON ◽  
CÉSAR FERNANDES AQUINO ◽  
LEILA CRISTINA ROSA DE LINS ◽  
LUCIANO RIBEIRO BRAGA

ABSTRACT This study aimed to evaluate some changes in the metabolism of papaya fruits submitted to damage by impact, abrasion and compression. Injuries were caused in two areas of 15 cm2 each; in diametrically opposite positions in the equatorial region of ‘Improved Sunrise Solo Line 72/12’ papaya fruits in ripening stage 3 (fruits with 25-40% of yellow skin). After damage, fruits were stored at 15 ± 1 °C and 85 ± 5% RH, and samples were taken at intervals of two days to evaluate skin color index, incidence of diseases, loss of fresh weight, leak of solutes, pulp firmness, soluble solids content and pectinmethylesterase and polygalacturonase activities. The respiratory rate was measured at intervals of 4, 8, 12, 24, 48 and 72 hours after damage. The results show the suppressive effects of mechanical damage on the final quality and also on fruit shelf life. Mechanically damaged fruits anticipated ripening, with skin color indexes higher than control fruits. Abrasion was the damage that caused more dramatic effects, showing, at the end of the study period, loss of fresh weight and leak of solutes of 27% and 18.7%, respectively, higher than control fruits. In addition, fruits submitted to this type of damage have higher respiratory rate and also higher rot incidence. The pectinmethylesterase and polygalacturonase activity was not consistently changed in relation to damage. Similarly, there was no difference in soluble solids content.


1995 ◽  
Vol 120 (6) ◽  
pp. 1075-1081 ◽  
Author(s):  
William M. Randle ◽  
Jane E. Lancaster ◽  
Martin L. Shaw ◽  
Kevin H. Sutton ◽  
Rob L. Hay ◽  
...  

Three onion (Allium cepa L.) cultivars were grown to maturity at five S fertility levels and analyzed for S-alk(en)yl-L-cysteine sulfoxide (ACSO) flavor precursors, γ-glutamyl peptide (γ-GP) intermediates, bulb S, pyruvic acid, and soluble solids content. ACSO concentration and composition changed with S fertility, and the response was cultivar dependent. At S treatments that induced S deficiency symptoms during active bulbing, (+)S-methyl-L-cysteine sulfoxide was the dominant flavor precursor, and the flavor pathway was a strong sink for available S. As S fertility increased to luxuriant levels, trans(+)-S-(1-propenyl)-L-cysteine sulfoxide (PRENCSO) became the dominant ACSO. (+)S-propyl-L-cysteine sulfoxide was found in low concentration relative to total ACSO at all S fertility treatments. With low S fertility, S rapidly was metabolized and low γ-GP concentrations were detected. As S fertility increased, γ-GP increased, especially γ-L-glutamyl-S-(1-propenyl)-L-cysteine sulfoxide, the penultimate compound leading to ACSO synthesis. Nearly 95% of the total bulb S could be accounted for in the measured S compounds at low S fertility. However, at the highest S treatment, only 40 % of the total bulb S could be attributed to the ACSO and γ-GP, indicating that other S compounds were significant S reservoirs in onions. Concentrations of enzymatically produced pyruvic acid (EPY) were most closely related to PRENCSO concentrations. Understanding the dynamics of flavor accumulation in onion and other vegetable Alliums will become increasing important as the food and phytomedicinal industries move toward greater product standardization and characterization.


HortScience ◽  
2002 ◽  
Vol 37 (1) ◽  
pp. 118-121 ◽  
Author(s):  
William M. Randle ◽  
David E. Kopsell ◽  
Dean A. Kopsell

A major decision in producing onions with mild flavor on low sulfur soils is determining when to stop applying SO4-2 to the crop. Sulfate (SO4-2) is necessary for good early growth, but high levels of available SO4-2 late in the season increase bulb pungency. The objective of this research was to determine how sequentially reducing the availability of SO4-2 during onion growth and development would affect flavor intensity and quality of Granex-type onions. Starting 77 days before harvest, SO4-2 concentrations were lowered from 1 mm to 0.05 mm on different blocks of onions in a greenhouse experiment at bi-weekly intervals. Total leaf and bulb S were measured at harvest to monitor S accumulation as SO4-2 fertility was sequentially reduced. Bulbs were harvested and analyzed for flavor precursors and their biosynthetic intermediates, gross flavor intensity as measured by enzymatically developed pyruvic acid (EPY), and soluble solids content. As SO4-2 fertility reductions were delayed during the experiment, total leaf and bulb S increased linearly. In addition, bulb EPY concentrations increased linearly as SO4-2 reduction was delayed, indicating increases in overall flavor intensity. While the total concentration of flavor precursors did not significantly change in response to lowering SO4-2 fertility during the experiment, the concentrations of MCSO to 1-PRENCSO did. MCSO concentration decreased and then increased in a quadratic manner. MCSO produces fresh onion and cabbage like flavors. 1-PRENCSO, on the other hand, increased linearly as the high SO4-2 fertility level was extended through bulb maturation. Increasing concentrations of 1-PRENCSO causes onions to have significantly more heat and mouth burn when eaten. Reducing available SO4-2 49 days prior to harvest coincided with a reduction in EPY and a change in the flavor biosynthetic pathway that appeared to be associated with the metabolic changes occurring with the onset of bulbing. Chemical names used: enzymatically developed pyruvic acid (EPY); methyl cysteine sulfoxide (MCSO); 1-propenyl cysteine sulfoxide (1-PRENCSO).


1978 ◽  
Vol 58 (2) ◽  
pp. 371-378 ◽  
Author(s):  
J. M. LEE ◽  
N. E. LOONEY

Lambert sweet cherries (Prunus avium L.) afflicted with little cherry disease (LCD) showed reduced dry matter accumulation long before visible fruit symptoms appeared. Seed weight and mesocarp soluble solids content were strongly correlated with fruit fresh weight at maturity. Respiration and ethylene production rates on a fresh weight basis were not different between fruits from diseased and LCD-free trees during most of the developmental period. Severe symptom development in Lambert appears to be associated with the lack of a distinct ’June drop’ in this cultivar coupled with a tendency for diseased trees to set a large crop.


2020 ◽  
Vol 12 (3) ◽  
Author(s):  
Alaa Suhiel Ibrahim

Abstract. This investigation was conducted during 2014, 2015 and 2016 in the field of the citrus experimental station in Ciano, the general corps of scientific agricultural researches. The growth and yield of orange trees (Washington navel 141) budded on seven citrus rootstocks (Sour orange, Troyer citrange, Carrizo citrange, Citrumelo 4475, Citrumelo 1452, Macrophylla and Cleopatra mandarin) and farmed since 1989 have been studied. The results for the average of yield showed that the trees grafted on Cleopatra mandarin (58.33 kg. tree-1) were significantly superior to those grafted on Macrophylla (34.17 kg. tree-1). Orange trees grafted on Citrumelo 4475 and Citrumelo 1452 were significantly superior to other treatments in trunk section area of the rootstock (922.41 and 841.02 cm2, respectively). The greatest fruit fresh weight was in trees grafted on Citrumelo 4475 (284.85 g. fruit-1) which were significantly superior to those grafted on Carrizo and Troyer citrange (232.49 and 236.06 g. fruit-1, respectively). The biggest total soluble solids (%) was in trees grafted on Carrizo and Troyer citrange (12.83% for both treatments) which were significantly superior to those grafted on Sour orangе and Macrophylla (11.5% for both treatments), while the greatest total acids (%) was by Sour orange (2.08%) without significant differences.


2009 ◽  
Vol 70 (1) ◽  
pp. 135-144 ◽  
Author(s):  
Marek Gajewski ◽  
Zenon Węglarz ◽  
Anna Sereda ◽  
Marta Bajer ◽  
Agnieszka Kuczkowska ◽  
...  

Quality of Carrots Grown for Processing as Affected by Nitrogen Fertilization and Harvest TermIn 2007-2008 the effect of nitrogen fertilization and harvest term on quality of two carrot cultivars was investigated. The field experiment was carried out in Żelazna Experimental Station of Warsaw University of Life Sciences. Karotan F1and Trafford F1cultivars, commonly grown for juice industry, were the objects of the experiment. Carrot seeds were sown at the beginning of May. Nitrogen fertilization was applied in five rates, ranged from 0 to 120 kg·ha-1and in two terms — before sowing and in the middle of growing season. Roots were harvested in three terms: mid-September, mid-October and the first decade of November. After harvest there were determined: nitrates (NO3) content in carrot roots and juice, soluble solids, colour parameters of juice in CIE L*a*b*system. The dose and the term of nitrogen fertilization influenced nitrates content in carrots, and the highest NO3concentration was found in carrots fertilized with 120 kg·ha-1of N before sowing. Karotan showed higher nitrates accumulation than Trafford. The content of nitrates in the roots was markedly higher than in carrot juice. Nitrates content in carrots decreased with delaying of harvest time, in opposite to soluble solids content. Soluble solids content and colour parameters of carrot juice were not affected by nitrogen fertilization, but the lowest L*, a*and b*values were observed at the last term of harvest.


Sign in / Sign up

Export Citation Format

Share Document