scholarly journals Probabilistic methods for calculating seismic resistance of buildings

2021 ◽  
Vol 6 (3) ◽  
pp. 293-302
Author(s):  
B. S. Ordobaev ◽  
B. S. Matozimov ◽  
S. S. Abdikeeva

The article aims to assess possibilities of using probabilistic methods for calculating seismic resistan of buildings based on the laws of structural mechanics. The design schemes and models of buildings rigidly embedded in the base and with a seismic isolation device are described. Formulas developed on the basis of the law of energy conservation, namely the seismodynamic law, which allow to estimate the coefficient of dynamism, are presented. It is proposed to abandon the main modes of vibration in the calculations, i.e. the coefficient ηir of the waveform and the vibration frequency of the residential building and the foundation during earthquakes. Shear and bending calculations of a residential building are based on the design model developed. The values of seismic force are determined by the first and last modes of vibration. Based on these values, it is proposed to calculate internal forces and deformations in the bearing structures of buildings using the methods of structural mechanics.

2011 ◽  
Vol 255-260 ◽  
pp. 2488-2491
Author(s):  
Bin Yan ◽  
Peng Liu

Continuous Beam Bridge was widely used, while seismic problem of it was prominent in meizoseismal area. According to mechanism of DSB, seismic performance of DSB was studied and the parameters of DSB were analyzed later, based on non-navigable bridge of Hong Kong-Zhuhai-Macau Bridge in deep water. It was found that DSB was an effective seismic-isolation device which could significantly reduce the seismic force although seismic displacement of bridge was increased. Yielding force and post-yielding stiffness were two main parameters of DSB.


2021 ◽  
Vol 2021.58 (0) ◽  
pp. C042
Author(s):  
Naoto KANAYAMA ◽  
Hiroyuki KIMURA ◽  
Masahiro SEKIMOTO ◽  
Tohru SASAKI

2021 ◽  
Author(s):  
◽  
Ivan Banović

The problem under consideration is the earthquake impact on structures. The subject of the performed research is the efficiency of seismic base isolation using layers of predominantly natural materials below the foundation, as well as the development of a numerical model for seismic analysis of structures with such isolation. The aseismic layers below foundation are made of limestone sand - ASL-1, stone pebbles - ASL-2, and stone pebbles combined with layers of geogrid and geomembrane - ASL-3. The experimental research methodology is based on the use of shake-table and other modern equipment for dynamic and static testing of structures. Experiments were conducted on the basis of detailed research plan and program. Efficiency of the limestone sand layer - ASL-1 was tested on cantilever concrete columns, under seismic excitations up to failure, varying the sand thickness and intensity of seismic excitation. Influence of several layer parameters on the efficiency of stone pebble layer - ASL-2 was investigated. For each considered layer parameter, a rigid model M0 was exposed to four different accelerograms, with three levels of peak ground acceleration (0.2 g, 0.4 g and 0.6 g), while all other layer parameters were kept constant. On the basis of test results, the optimal pebble layer was adopted. Afterwards, the optimal ASL-2 efficiency was tested on various model parameters: stiffness (deformable models M1-M4), foundation size (small and large), excitation type (four earthquake accelerograms), and stress level in the model (elastic and up to failure). In the ASL-3 composite aseismic layer, the optimal ASL-2 is combined with a thin additional layer of sliding material (geogrid, geomembrane above limestone sand layer), in order to achieve greater efficiency of this layer than that of the ASL-2. A total of eleven different aseismic layers were considered. To determine the optimal ASL-3, the M0 model was used, like for the ASL-2. On the basis of test results, the optimal ASL-3 layer was adopted (one higher strength geogrid at the pebble layer top). The optimal ASL-3 is tested on various model parameters, analogous to the optimal ASL-2. A numerical model for reliable seismic analysis of concrete, steel, and masonry structures with seismic base isolation using ASL-2 was developed, with innovative constitutive model for seismic isolation. The model can simulate the main nonlinear effects of mentioned materials, and was verified on performed experimental tests. In relation to the rigid base - RB without seismic isolation, model based on the ASL-1 had an average reduction in seismic force and strain/stress by approximately 10% at lower PGA levels and approximately 14% at model failure. Due to the effect of sand calcification over time, the long-term seismic efficiency of such a layer is questionable. It was concluded that the aseismic layers ASL-2 and ASL-3 are not suitable for models of medium-stiff structure M3 and soft structure M4. In relation to the RB without seismic isolation, the M1 (very stiff structure) and M2 (stiff structure) based on the ASL-2 had an average reduction in seismic force and strain/stress by approximately 13% at lower PGA levels and approximately 25% at model failure. In relation to the RB without seismic isolation, the M1 and M2 based on the ASL-3 had an average reduction in seismic force and strain/stress by approximately 25% at lower PGA levels and approximately 34% at model failure. In relation to the RB without seismic isolation, the ASL-2 and ASL-3 did not result in major M1 and M2 model displacements, which was also favourable. It is concluded that the ASL-2 and especially ASL-3 have great potential for seismic base isolation of very stiff and stiff structures, as well as small bridges based on solid ground, but further research is needed. In addition, it was concluded that the developed numerical model has great potential for practical application. Finally, further verification of the created numerical model on the results of other experimental tests is needed, but also improvement of the developed constitutive models.


Author(s):  
Kengo Goda ◽  
Osamu Furuya ◽  
Kohei Imamura ◽  
Kenta Ishihana

At the present, base isolation system has been recognized by general earthquake resistant technique since the Great Hanshin Earthquake 1995. The seismic isolation will be aggressively applied to not only architectural and civil structures but also various structures, because the effectiveness on seismic safety had been demonstrated again in the Great East Japan Earthquake. In generally, although the base isolation system is divided into laminated rubber bearing type and friction sliding bearing type. In the case of former type, shape factor, maximum or minimum outer shapes and so on are restricted by the material characteristics in visco-elastic material. In general, the isolation structure is used in high damping rubber. However, we pay attention to base isolation using urethane elastomer. Urethane elastomer has excellent elasticity, mechanical strength, abrasion resistance, weather resistance, oil resistance, impact resistance the absorbent, anti-vibration and excellent low-temperature properties. Furthermore, it is possible to impart various characteristics by a combination of isocyanate and polyol and chain extender, requires no large-scale apparatus, it has the advantage molecular design is easy. In previous study, the research and development of laminated type base isolation device using urethane elastomer was carried out to upgrade a seismic safety for various structures. The fundamental characteristics was investigated from several loading test by using various experimental devices, and the design formula for the stiffness and equivalent damping coefficient is formulated as an approximate expression of mechanical characteristics until now. It was confirmed that urethane elastomer is not hardening up to 500% shear strain. Moreover, the experimental examination for aged deterioration in the urethane material has been continuously carried out. As the results, it was confirmed that the laminated type seismic isolation device using urethane elastomer is possible to develop as a practicable device from the stable mechanical properties as considering in design step. In this study, the small-scale laminated type base isolation device using urethane elastomer is advanced to the direction of further technical upgrading and of scale down for light-weight structure as a sever rack. The first stage, basic properties of the urethane elastomer has been investigated by loading test. Furthermore, the design equation is created by loading test using urethane elastomer. The validity of the design equation has been confirmed. The second stage, the compression creep test with laminated type base isolation device has been investigated to confirm an effect on light-weight mechanical devices.


2021 ◽  
Vol 73 (06) ◽  
pp. 633-648
Author(s):  
Stjepan Lakusic

The phases that must be completed so that a building damaged in earthquake that struck Zagreb on 22 March 2020 can be renovated and strengthened to the required level of seismic resistance are presented in the paper. All phases are therefore presented, starting from the rapid and then detailed inspection, and continuing with preparation of the structural condition assessment report, preparation of renovation design and, finally, ending with realisation of work with expert supervision. A special attention is paid to structural analysis that is conducted using a nonlinear static method based on displacements, the so called pushover analysis, which is considered to be one of the most appropriate methods for seismic analysis of existing masonry structures. All procedures conducted in the scope of this renovation were realised in accordance with legislation that entered into force after the earthquake.


2006 ◽  
Vol 2006.12 (0) ◽  
pp. 471-472 ◽  
Author(s):  
Nobuhiro Wakabayashi ◽  
Kenichiro Ohmata ◽  
Osamu Tanaka

2012 ◽  
Vol 204-208 ◽  
pp. 869-871
Author(s):  
Cai Hua Wang ◽  
Hui Jian Li ◽  
Jian Feng Wu

The multi-storey reinforced concrete frame structure used lead rubber pad as the base isolation device. The paper had modal analysis of base-isolated multi-storey reinforced concrete frame structure using the ANSYS software. Comparing the frequency and vibration mode before and after isolation under El-Centro wave, It concluded the leader rubber pad have seismic isolation effect for multi-storey reinforced concrete frame structure .


Sign in / Sign up

Export Citation Format

Share Document