Shading during the Early Grain Filling Period Does Not Affect Potential Grain Dry Matter Increase in Rice

2000 ◽  
Vol 92 (3) ◽  
pp. 411-417 ◽  
Author(s):  
Tohru Kobata ◽  
Makoto Sugawara ◽  
Sadanori Takatu
1995 ◽  
Vol 35 (4) ◽  
pp. 495 ◽  
Author(s):  
RG Flood ◽  
PJ Martin ◽  
WK Gardner

Total crop dry matter (DM) production and its components, remobilisation of stem reserves, and the relation of these to grain yield were studied in 10 wheat cultivars sown at Walpeup, Boort, and Horsham in the north-western Victorian wheatbelt. Between sites, all DM components decreased in the order Horsham > Boort > Walpeup. Differences between Boort and Walpeup were not always significant. Total DM at anthesis for Walpeu,p and Boort was in a similar range, and less than that for Horsham. Yields increased in the order Walpeup < Boort < Horsham. When data from the 3 sites were combined, leaf, stem (excluding cv. Argentine IX), and total DM were related to grain yield. Within sites, ear DM at anthesis was related to grain yield. Grain yield for all cultivars at Horsham and Walpeup and 5 cultivars at Boort was greater than the increases in crop DM from anthesis to maturity, indicating that pre-anthesis stored assimilates (stem reserves) were used for grain filling. Post-anthesis decrease in stem weight was inversely related to grain yield only at Horsham, which supports the view of utilisation of stem reserves for grain filling at this site. At Boort and Walpeup there was a similar negative trend, but values for 2 cultivars at each site were outliers, which weakened the trend. The wide adaptability of the Australian cultivars used in this study may be related to the differential remobilisation of stem reserves at each site. A measure of yield stability, however, was not related to stem weight loss during the grain-filling period.


1981 ◽  
Vol 96 (1) ◽  
pp. 167-186 ◽  
Author(s):  
D. W. Lawlor ◽  
W. Day ◽  
A. E. Johnston ◽  
B. J. Legg ◽  
K. J. Parkinson

SUMMARYThe effects of water deficit on growth of spring barley were analysed under five irrigation treatments. One crop was irrigated at weekly intervals from emergence throughout the growing season, and one was not irrigated at all after emergence. Soil water deficits in the other treatments were allowed to develop early, intermediate or late in the crop's development.Weekly irrigation produced a crop with a large leaf area index (maximum value 4) and maintained green leaf and awns throughout the grain-filling period. Early drought decreased leaf area index (maximum value 2) by slowing expansion of main-stem leaves and decreasing the number and growth of tiller leaves. Leaf senescence was also increased with drought. Drought late in the development of ears and leaves and during the grain-filling period caused leaves and awns to senesce so that the total photosynthetic areas decreased faster than with irrigation. Photosynthetic rate per unit leaf area was little affected by drought so total dry-matter production was most affected by differences in leaf area.Early drought gave fewer tillers (550/m2) and fewer grains per ear (18) than did irrigation (760 tillers/m2 and 21 grains per ear). Late irrigation after drought increased the number of grains per ear slightly but not the number of ears/m2. Thus at the start of the grain-filling period crops which had suffered drought early had fewer grains than irrigated (9·5 and 18·8 × 103/m2 respectively) or crops which suffered drought later in development (14 × 103/m2).During the first 2 weeks of filling, grains grew at almost the same rate in all treatments. Current assimilate supply was probably insufficient to provide this growth in crops which had suffered drought, and stem reserves were mobilized, as shown by the decrease in stem mass during the period. Grains filled for 8 days longer with irrigation and were heavier (36–38 mg) than without irrigation (29–30 mg). Drought throughout the grainfilling period after irrigation earlier in the season resulted in the smallest grains (29 mg).Grain yield depended on the number of ears, the number of grains per ear and mass per grain. Early drought decreased tillering and tiller ear production and the number of grains that filled in each ear. Late drought affected grain size via the effects on photosynthetic surface area.Drought decreased the concentrations of phosphorus, potassium and magnesium in the dry matter of crops, and irrigation after drought increased them. Concentration of nitrogen was little affected by treatment. Possible mechanisms by which water deficits and nutrient supply affect crop growth and yield are discussed.


1982 ◽  
Vol 62 (4) ◽  
pp. 855-860 ◽  
Author(s):  
M. TOLLENAAR ◽  
T. B. DAYNARD

The effect of source-sink ratio (i.e., the ability of the leaves to produce photosynthate versus the capacity of the grain to accommodate the assimilates) on dry matter accumulation and leaf senescence during the grain filling period of two short-season maize (Zea mays L.) hybrids was investigated in 1979 and 1980. Source-sink ratio of the maize hybrids was altered by ear removal at midsilking and at 3 wk after midsilking; by partial fertilization of the topmost ear so that treatment ears contained approximately 50% of kernel number of the control; and by removal of all leaf blades but that of the ear leaf at 2 wk after midsilking. Crop growth rate during the period from 3–5 wk after midsilking was reduced by 30% for the partly fertilized treatment and by 60% for both ear removal treatments. During the period from 5 to 7 wk after midsilking, the treatment-by-hybrid interaction for crop growth rate reflected different patterns of leaf senescence. In one hybrid, treatments which caused reductions in sink size delayed leaf senescence and increased the crop growth during the 5 to 7-wk postsilking interval, relative to the control. The reverse was evident for the other hybrid. Partial defoliation tended to cause the remaining ear leaf to senescence slightly earlier than in the control. Apparently two types of leaf senescence occurred: senescence due to assimilate starvation, and senescence due to excessive assimilate accumulation. The former caused by excessively low source-sink ratio and the latter caused by excessively high source-sink ratio. These results indicate that a delicate balance exists between sink and source during the grain-filling period of maize, and that disturbance of this balance can cause substantial yield reductions, plus an acceleration of leaf senescence and maturation processes.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Witold Grzebisz ◽  
Jarosław Potarzycki

The application of magnesium significantly affects the components of the wheat yield and the dry matter partitioning in the grain-filling period (GFP). This hypothesis was tested in 2013, 2014, and 2015. A two-factorial experiment with three rates of magnesium (0, 25, 50 kg ha−1) and four stages of Mg foliar fertilization (without, BBCH 30, 49/50, two-stage) was carried out. Plant material collected at BBCH: 58, 79, 89 was divided into leaves, stems, ears, chaff, and grain. The wheat yield increased by 0.5 and 0.7 t ha−1 in response to the soil and foliar Mg application. The interaction of both systems gave + 0.9 t ha−1. The Mg application affected the grain yield by increasing grain density (GD), wheat biomass at the onset of wheat flowering, durability of leaves in GFP, and share of remobilized dry matter (REQ) in the grain yield. The current photosynthesis accounted for 66% and the REQ for 34%. The soil-applied Mg increased the REQ share in the grain yield to over 50% in 2014 and 2015. The highest yield is possible, but provided a sufficiently high GD, and a balanced share of both assimilate sources in the grain yield during the maturation phase of wheat growth.


1981 ◽  
Vol 59 (3) ◽  
pp. 415-420 ◽  
Author(s):  
L. A. Hunt ◽  
L. V. Edgington

The growth of a crop of 'Arrow' winter wheat (Triticum aestivum L. em Thell.) was studied in detail from 2 weeks before ear emergence to maturity. Aboveground dry weight increased up to 4 weeks after ear emergence, when it reached a maximum value of 1.4 kg∙m−2, and then decreased marginally. The rate of aboveground dry matter accumulation over a 6-week period beginning 2 weeks before ear emergence averaged 24.4 g∙m−2∙day−1.Rapid ear growth commenced some 2 weeks after ear emergence and continued until after the crop had lost all green coloration. Dry matter accumulation in the ears in the period beginning 3 weeks past ear emergence was greater than accumulation in the aboveground parts of the crop as a whole. This indicated that much of the ear dry matter increase in the latter part of the grain filling period occurred as a result of translocation of previously accumulated assimilates. The stem fraction (including leaf sheaths), the major aboveground reservoir of material that is translocated to the ear, decreased from 800 g∙m−2 at 3 weeks after ear emergence to 493 g∙m−2 at maturity.


1975 ◽  
Vol 85 (2) ◽  
pp. 271-279 ◽  
Author(s):  
D. M. Osafo ◽  
G. M. Milbourn

SUMMARYExperiments are described which analyse the effects of date of sowing and of a black petroleum soil mulch on the growth of two maize hybrids. The two hybrids used were Anjou 210, which is late maturing in S.E. England, and Kelvedon 75A, which is an early hybrid.As sowing was delayed from mid-April until the end of May, so there was a greater development of vegetative tissue (mainly stem) and leaf area which reached peaks at a later stage after silking. In Anjou 210 early sowing led to higher grain yields (12%) as the production of peak vegetative weight near to the time of silking allowed dry matter produced after that stage, still at a time of high radiation, to move direct to the oars. Also, the remobilization of the secondary source of grain dry matter, namely previously stored photosynthate from the stem, occurred earlier with early sowing and to a greater extent when a longer grain-filling period was allowed.The hybrid K 75A had a lower vegetative weight, and earlier silking coincided with higher levels of radiation, and the resultant increase in net assimilation rate led to a higher proportion of dry matter being partitioned into the ear. Because this hybrid flowered and senesced early, reserves of stem carbohydrate were low and the time available to transfer carbohydrate to the ear was short, resulting in lower yields than in the later maturing Anjou 210. K 75A also responded unexpectedly to the sowing treatments. Although late sowing gave higher grain yields in both hybrids up to 156 days after sowing, in the case of K 75 A, the early senescence curtailed the continuation of grain fill that would normally give early sowing an advantage and hence the late sown K 75 A produced 10 % more grain.The application of a black petroleum mulch to the surface of the soil to raise soil temperature enhanced the benefits derived from early sowing. Plants given this treatment produced greater leaf areas and vegetative dry weights. As a result more carbohydrate was translocated from the stem during the grain-filling period, increasing grain yield by 13% following an increase in both number of grains and individual grain weight.


Sign in / Sign up

Export Citation Format

Share Document