Yield, Yield Distribution, and Nutritive Value of Intensively Managed Warm-Season Annual Grasses

2001 ◽  
Vol 93 (6) ◽  
pp. 1257-1262 ◽  
Author(s):  
Renato S. Fontaneli ◽  
Lynn E. Sollenberger ◽  
Charles R. Staples
2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 26-26
Author(s):  
Justin C Burt ◽  
Jennifer J Tucker ◽  
Lisa Baxter

Abstract Bermudagrass (Cynodon dactylon) is one of the most common perennial warm-season forage crops grown in the South. While prominent in the region bermudagrass management requires large amounts of fertility and forage quality is moderate at best. Incorporating a legume into bermudagrass pastures could serve as an alternative to the necessary applications of synthetic N, while also improving the nutritive value of the forage base. A two-year grazing evaluation was conducted from May-Sept. 2018 (Y1) and May-Aug. 2019 (Y2) at the University of Georgia Tifton Campus in Tifton, Georgia, to compare concurring production of alfalfa/bermudagrass mixed pastures (BGA) with bermudagrass monoculture pastures with (BGN) or without (BGZ) the application of synthetic nitrogen. The experimental design was a randomized complete block with three treatments and two replications. All paddocks were evaluated pre and post grazing event for herbage availability, botanical composition, forage species competitiveness, and nutritive value. Paddocks (0.8-ha) were rotationally grazed using put and take management with stocker steers (Y1 BW=195.9±22.9 kg; Y2 BW=228.5±30.0 kg), two testers per treatment. Steers were weighed at initiation, conclusion, and on a 28–30 day interval for calculation of ADG and gain/ha. Statistical analysis was conducted using the PROC MIXED procedure of SAS. Despite significant drought in Y2, year did not affect total gain/ha, however treatment did (P = 0.04), such that BGA was highest (383.6±35.1 kg/ha), and BGN and BGZ were not different (261.2±35.1 kg/ha and 239.0±35.1 kg/ha, respectively). This is likely due to the lower stocking density and inclusion of high-quality volunteer annual grasses in BGZ treatments which allowed for selective grazing. These data suggest that rotationally grazing alfalfa/bermudagrass mixtures can result in a higher gain/ha, than bermudagrass pastures that are supplemented with or without synthetic N in the South.


2015 ◽  
Vol 66 (2) ◽  
pp. 184
Author(s):  
K. N. Tozer ◽  
C. A. Cameron ◽  
L. Matthews

Setaria pumila and Digitaria sanguinalis are undesirable, C4 annual grass species in intensively managed temperate and subtropical dairy pastures. A comparative, small-plot study was established in Lolium perenne-based dairy pastures to determine the extent to which these species are grazed and how this relates to changes in their nutritive value over summer–early autumn. Setaria pumila was taller than D. sanguinalis before grazing (16–24 and 10–17 cm, respectively) and was grazed to lower post-grazing height and less post-grazing groundcover than D. sanguinalis: height 4.1 and 4.7 cm, cover 67 and 83%, respectively, averaged over January–March (summer–early autumn). Nutritive quality was similar for both species (with metabolisable energy values for December–March averaging 11.1, 10.0, 8.5 and 9.0 MJ kg DM–1) and is unlikely to be a key determinant of differences in grazing defoliation. In addition, post-grazing cover and post-grazing height for both annual grasses increased over the grazing season and were associated with declining nutritive value of both species. The nutritive value of L. perenne was higher than that of both S. pumila and D. sanguinalis and it did not decline over the grazing season (December–March: 11.3, 11.5, 9.3 and 11.4 MJ kg DM–1). Although S. pumila and D. sanguinalis were grazed in all months, they readily produced new panicles between grazings. Given this, these annual grasses are likely to spread in Lolium perenne-based dairy pastures unless interventions are used.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 18-18
Author(s):  
Justin C Burt ◽  
Jennifer J Tucker ◽  
Lisa Baxter

Abstract Bermudagrass (Cynodon dactylon) is one of the most common perennial warm-season forage crops grown in the South. While prominent in the region bermudagrass management requires large amounts of fertility and forage quality is moderate at best. Incorporating a legume into bermudagrass pastures could serve as an alternative to the necessary applications of synthetic N, while also improving the nutritive value of the forage base. A two-year grazing evaluation was conducted from May-Sept. 2018 (Y1) and May-Aug. 2019 (Y2) at the University of Georgia Tifton Campus in Tifton, Georgia, to compare concurring production of alfalfa/bermudagrass mixed pastures (BGA) with bermudagrass monoculture pastures with (BGN) or without (BGZ) the application of synthetic nitrogen. The experimental design was a randomized complete block with three treatments and two replications. All paddocks were evaluated pre and post grazing event for herbage availability, botanical composition, forage species competitiveness, and nutritive value. Paddocks (0.8-ha) were rotationally grazed using put and take management with stocker steers (Y1 BW=195.9±22.9 kg; Y2 BW=228.5±30.0 kg), two testers per treatment. Steers were weighed at initiation, conclusion, and on a 28–30 day interval for calculation of ADG and gain/ha. Statistical analysis was conducted using the PROC MIXED procedure of SAS. Despite significant drought in Y2, year did not affect total gain/ha; however, treatment did (P = 0.04), such that BGA was highest (383.6±35.1 kg/ha), and BGN and BGZ were not different (261.2±35.1 kg/ha and 239.0±35.1 kg/ha, respectively). This is likely due to the lower stocking density and inclusion of high-quality volunteer annual grasses in BGZ treatments which allowed for selective grazing. These data suggest that rotationally grazing alfalfa/bermudagrass mixtures can result in a higher gain/ha, than bermudagrass pastures that are supplemented with or without synthetic N in the South.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1963
Author(s):  
Kathryn E. Ritz ◽  
Bradley J. Heins ◽  
Roger Moon ◽  
Craig Sheaffer ◽  
Sharon L. Weyers

The objective of this study was to compare the forage nutritive value of cool-season perennial grasses and legumes with that of warm-season annual grasses grazed by organic dairy cows. Two pasture systems were analyzed across the grazing season at an organic dairy in Morris, Minnesota. Pasture system 1 included perennial ryegrass (Lolium perenne L.), orchardgrass (Dactylis glomerata L.), meadow bromegrass (Bromus riparius Rehmann), meadow fescue (Schedonorus pratensis (Huds.) P. Beauv), alfalfa (Medicago sativa L.), white clover (Trifolium repens L.), red clover (Trifolium pratense L.), and chicory (Cichorium intybus L.). Pasture system 2 was a combination of system 1 and monocultures of warm-season grasses (sorghum-sudangrass (Sorghum bicolor [L.] Moench subsp. drummondii [Steud.]) and teff (Eragrostis tef L.)). Across the grazing season, forage yield was 39% greater for system 2 than system 1 due to greater forage yield during the summer. Neutral detergent fiber (NDF) and acid detergent fiber (ADF) were similar for cool-season and warm-season grasses. Warm-season grasses had greater forage yield during the summer months compared with cool-season grasses and legumes. The total tract NDF digestibility (TTNDFD) varied by month and year across the study for both pasture systems. Overall, weather may affect the forage nutritive value for both cool-season perennial grasses and legumes and warm-season annual grasses.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 27-27
Author(s):  
Jane A Parish ◽  
Kalisha C Yankey ◽  
Libby S Durst

Abstract Optimal use of native warm-season grasses in pasture systems involves stocking grazing livestock at suitable rates. The study objective was to evaluate forage nutritive value and heifer ADG at two stocking rates on mixed-sward pastures of big bluestem (Andropogon gerardi Vitman), little bluestem (Andropogon scoparius), and indiangrass (Sorghastrum nutans L.). Pastures (3 replications) were stocked for 56 d during June and July in 2 yr with crossbred (Bos taurus) heifers (n = 24 heifers/year) stratified by initial BW (288.3 ± 1.7 kg) to one of two continuous stocking rates: 1.9 heifers/ha (HIGH) and 1.2 heifers/ha (LOW). Mean forage nutritive values on a DM basis were not different between HIGH and LOW stocking rates, respectively, for CP (7.0 ± 0.2% vs 6.7 ± 0.2%; P = 0.27), ADF (41.0 ± 0.6 vs. 41.4 ± 0.6; P = 0.64), NDF (69.9 ± 0.5 vs. 68.7 ± 0.5; P = 0.09), or relative feed value (RFV) (76.0 ± 1.0 vs. 76.9 ± 1.0; P = 0.53). There was a year effect (P < 0.01) and stocking rate x day effect (P < 0.01) for TDN. At LOW, TDN decreased from day 0 to day 28 (P = 0.02) and day 28 to day 56 (P = 0.02). At HIGH, TDN decreased (P < 0.01) from day 0 to day 28 but remained steady until day 56 (P = 0.21). There was a stocking rate x day interaction (P < 0.01) with ADG: LOW day 28 to 56 (1.20 ± 0.08 kg/day), HIGH day 0 to 28 (0.89 ± 0.08 kg/day), HIGH day 28 to 56 (0.44 ± 0.08 kg/day), and LOW day 0 to 28 (0.30 ± 0.08 kg/day). Further assessment of cattle ADG using more divergent stocking rates and plant persistence measures is warranted to inform ideal native grass stocking rate recommendations.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 26-27
Author(s):  
Caroline Chappell ◽  
Landon Marks ◽  
Katie Mason ◽  
Mary K Mullenix ◽  
Sandra L Dillard ◽  
...  

Abstract A 2-yr study was conducted at Black Belt Research and Extension Center in Marion Junction, AL, to evaluate the effect of nitrogen (N) fertilizer application rate on forage production characteristics, nutritive value, and animal performance of beef heifers grazing a mixture of native warm-season grasses (NWSG) including big bluestem, little bluestem, and indiangrass. Six, two-hectare plots were randomly assigned to one of two treatments (0 or 67 kg N ha-1 applied in early April; n = 3 replications per treatment). Paddocks were continuously stocked with four weaned Angus × Simmental beef heifers (initial BW 288 ± 7 kg) from late May/early June through mid-to-late August during 2018 (73 grazing d) and 2019 (70 grazing d), respectively. Put-and-take cattle were used to manage forage to a target of 38 cm. Forage mass and canopy heights were collected every two weeks during the trial. Visual ground cover ratings, canopy light interception, and botanical composition were measured at the beginning and end of the trial in each year. Hand-plucked samples were collected every two weeks during the grazing trial to determine forage nutritional value. Data were analyzed using the PROC MIXED procedure in SAS 9.4, and differences were declared significant when P ≤ 0.05. Nitrogen fertilized NWSG had greater crude protein (P < 0.0001), sward heights (P = 0.0003), and canopy light interception at the beginning of the season (P = 0.0049) compared to non-fertilized paddocks. However, there were no differences (P ≥ 0.05) among N-fertility treatments for mean forage mass, heifer ADG, or BCS across the 2-yr study. Botanical composition data indicated that indiangrass decreased from 64% to 61% (P = 0.0022) and weed pressure increased from 11% to 15% (P = 0.0064) across the summer grazing season. Canopy light interception decreased by 51% from early June to August in fertilized NWSG and 26% in unfertilized paddocks, respectively. These data illustrate that NWSG systems may provide a viable grazing system in the summer months under reduced N inputs.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 264
Author(s):  
Kathryn E. Ritz ◽  
Bradley J. Heins ◽  
Roger D. Moon ◽  
Craig C. Sheaffer ◽  
Sharon L. Weyers

Organic dairy cows were used to evaluate the effect of two organic pasture production systems (temperate grass species and warm-season annual grasses and cool-season annuals compared with temperate grasses only) across two grazing seasons (May to October of 2014 and 2015) on milk production, milk components (fat, protein, milk urea nitrogen (MUN), somatic cell score (SCS)), body weight, body condition score (BCS), and activity and rumination (min/day). Cows were assigned to two pasture systems across the grazing season at an organic research dairy in Morris, Minnesota. Pasture System 1 was cool-season perennials (CSP) and Pasture System 2 was a combination of System 1 and warm-season grasses and cool-season annuals. System 1 and System 2 cows had similar milk production (14.7 and 14.8 kg d−1), fat percentage (3.92% vs. 3.80%), protein percentage (3.21% vs. 3.17%), MUN (12.5 and 11.5 mg dL−1), and SCS (4.05 and 4.07), respectively. Cows in System 1 had greater daily rumination (530 min/day) compared to cows in System 2 (470 min/day). In summary, warm-season annual grasses may be incorporated into grazing systems for pastured dairy cattle.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 28-29
Author(s):  
Kelly Mercier ◽  
Chris Teutsch ◽  
Ray Smith ◽  
Eric Vanzant ◽  
Kenny Burdine ◽  
...  

Abstract The objective of this study was to determine if increasing forage botanical diversity improved stocker gains on warm-season annual (WSA) pastures. An opportunity exists to add extra gain on fall-born calves by grazing summer pastures after spring weaning and selling at a more favorable late summer market. However, cool-season perennial pastures in the Mid-South often have insufficient quality and yield to support desired summer gains. Therefore, the improved production and nutritive value of WSA forages shows promise in this system. A study was conducted near Princeton, KY, where calves (329, 366, and 297 kg in 2017, 2018, and 2019, respectively) grazed one of three WSA forage treatments without supplementation in a randomized complete block design with three replications. Treatments included 1) sorghum-sudangrass monoculture (MONO), 2) simple mixture (SIMPLE = sorghum-sudangrass, pearl millet, soybean), and 3) complex mixture (COMPLEX = SIMPLE + sudangrass, corn, crabgrass, cowpea, sunflower, sunn hemp, daikon radish, forage rape, Korean lespedeza). In 2017, MONO and SIMPLE calves had higher average daily gain (ADG) than COMPLEX calves (0.79 kg/day vs. 0.66 kg/day, P < 0.03). In 2018, no differences in ADG were detected among treatments (P > 0.3); however, calves only gained 0.01 kg/day. In 2019, MONO and SIMPLE calves again had higher ADG than COMPLEX calves (0.59 kg/day vs. 0.43 kg/day, P < 0.03). The exceptionally low 2018 ADG was likely due to the higher nutritional demand of heavier calves and the lower nutritive value of mature forages compared to other years. In conclusion, complex WSA forage mixtures did not offer any improvement in animal performance, and proper management of all WSA forages (maintaining a vegetative state) is paramount to achieving adequate gains on stockers without supplementation; however, supplementation may be necessary to improve WSA forage utilization in the rumen, potentially leading to more favorable gains.


Weed Science ◽  
1989 ◽  
Vol 37 (3) ◽  
pp. 375-379 ◽  
Author(s):  
Thomas J. Peters ◽  
Russell S. Moomaw ◽  
Alex R. Martin

The control of three summer annual grass weeds with herbicides during establishment of forage grasses was studied near Concord and Mead, NE, in 1984, 1985, and 1986. Three cool-season forage grasses, intermediate wheatgrass, tall fescue, and smooth bromegrass, and two warm-season grasses, big bluestem and switchgrass, were included. The control of three major summer annual grasses, green foxtail, barnyardgrass, and large crabgrass, was excellent with fenoxaprop at 0.22 kg ai/ha. Slight to moderate injury to cool-season forage grasses and severe injury to warm-season grasses were evident. Sethoxydim at 0.22 kg ai/ha and haloxyfop at 0.11 kg ai/ha controlled green foxtail and large crabgrass, but not barnyardgrass. Sulfometuron-treated big bluestem and switchgrass plots had the best forage stand frequencies and yields and, at the rate used, sulfometuron satisfactorily controlled green foxtail but only marginally controlled barnyardgrass and large crabgrass.


Sign in / Sign up

Export Citation Format

Share Document