Grazing defoliation and nutritive value of Setaria pumila and Digitaria sanguinalis in Lolium perenne-based swards

2015 ◽  
Vol 66 (2) ◽  
pp. 184
Author(s):  
K. N. Tozer ◽  
C. A. Cameron ◽  
L. Matthews

Setaria pumila and Digitaria sanguinalis are undesirable, C4 annual grass species in intensively managed temperate and subtropical dairy pastures. A comparative, small-plot study was established in Lolium perenne-based dairy pastures to determine the extent to which these species are grazed and how this relates to changes in their nutritive value over summer–early autumn. Setaria pumila was taller than D. sanguinalis before grazing (16–24 and 10–17 cm, respectively) and was grazed to lower post-grazing height and less post-grazing groundcover than D. sanguinalis: height 4.1 and 4.7 cm, cover 67 and 83%, respectively, averaged over January–March (summer–early autumn). Nutritive quality was similar for both species (with metabolisable energy values for December–March averaging 11.1, 10.0, 8.5 and 9.0 MJ kg DM–1) and is unlikely to be a key determinant of differences in grazing defoliation. In addition, post-grazing cover and post-grazing height for both annual grasses increased over the grazing season and were associated with declining nutritive value of both species. The nutritive value of L. perenne was higher than that of both S. pumila and D. sanguinalis and it did not decline over the grazing season (December–March: 11.3, 11.5, 9.3 and 11.4 MJ kg DM–1). Although S. pumila and D. sanguinalis were grazed in all months, they readily produced new panicles between grazings. Given this, these annual grasses are likely to spread in Lolium perenne-based dairy pastures unless interventions are used.


2001 ◽  
Vol 93 (6) ◽  
pp. 1257-1262 ◽  
Author(s):  
Renato S. Fontaneli ◽  
Lynn E. Sollenberger ◽  
Charles R. Staples


2009 ◽  
Vol 6 (1) ◽  
pp. 59-66 ◽  
Author(s):  
M. Mattsson ◽  
B. Herrmann ◽  
S. Jones ◽  
A. Neftel ◽  
M. A. Sutton ◽  
...  

Abstract. Species diversity in grasslands usually declines with increasing input of nitrogen from fertilizers or atmospheric deposition. Conversely, species diversity may also impact the build-up of soil and plant nitrogen pools. One important pool is NH3/NH4+ which also can be exchanged between plant leaves and the atmosphere. Limited information is available on how plant-atmosphere ammonia exchange is related to species diversity in grasslands. We have here investigated grass species abundance and different foliar nitrogen pools in 4-year-old intensively managed grassland. Apoplastic pH and NH4+ concentrations of the 8 most abundant species (Lolium perenne, Phleum pratense, Festuca pratensis, Lolium multiflorum, Poa pratensis, Dactylis glomerata, Holcus lanatus, Bromus mollis) were used to calculate stomatal NH3 compensation points. Apoplastic NH4+ concentrations differed considerably among the species, ranging from 13 to 117 μM, with highest values in Festuca pratensis. Also apoplastic pH values varied, from pH 6.0 in Phleum pratense to 6.9 in Dactylis glomerata. The observed differences in apoplastic NH4+ and pH resulted in a large span of predicted values for the stomatal NH3 compensation point which ranged between 0.20 and 6.57 nmol mol−1. Three species (Lolium perenne, Festuca pratensis and Dactylis glomerata) had sufficiently high NH3 compensation point and abundance to contribute to the bi-directional NH3 fluxes recorded over the whole field. The other 5 grass species had NH3 compensation points considerably below the atmospheric NH3 concentration and were thus not likely to contribute to NH3 emission but only to NH3 uptake from the atmosphere. Evaluated across species, leaf bulk-tissue NH4+ concentrations correlated well (r2=0.902) with stomatal NH3 compensation points calculated on the basis of the apoplastic bioassay. This suggests that leaf tissue NH4+ concentrations combined with data for the frequency distribution of the corresponding species can be used for predicting the NH3 exchange potential of a mixed grass sward.



Weed Science ◽  
1984 ◽  
Vol 32 (2) ◽  
pp. 174-177 ◽  
Author(s):  
Jon P. Chernicky ◽  
Billy J. Gossett ◽  
Tim R. Murphy

Studies were conducted to measure the foliar activity of sethoxydim (BAS 9052 OH) {2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl-3-hydroxy-2-cyclohexen-1-one} and RO-13-8895 {acetone-O-[D-2-[p-[(α,α,α-trifluoro-p-tolyl)-oxy] phenoxy] propionyl] oxime} as affected by adjuvants, soil moisture, and growth stage of grasses, and to compare the responses of three grass species to these herbicides. The activity of both herbicides was increased by adjuvants. The activity of sethoxydim was not significantly affected by soil moisture. Goosegrass [Eleusine indica(L.) Gaertn. ♯3ELEIN] and broadleaf signalgrass [Brachiaria platyphylla(Griseb. ♯ BRAPP) Nash] control was greater with RO-13-8895 at the high than at the low soil moisture level. Soil moisture did not influence large crabgrass [Digitaria sanguinalis(L.) Scop. ♯ DIGSA] control, since it was relatively tolerant to RO-13-8895. Both herbicides gave greater control at early than at late growth stages. When averaged over all variables, sethoxydim gave greater large crabgrass control than RO-13-8895, but RO-13-8895 gave greater goosegrass and broadleaf signalgrass control than sethoxydim.



Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 540
Author(s):  
Talea Becker ◽  
Johannes Isselstein ◽  
Rena Jürschik ◽  
Matthias Benke ◽  
Manfred Kayser

In future, grass swards need to be adapted to climate change and interactions of management and site are becoming more important. The persistence of Lolium perenne on peatland or during dry periods is limited and alternative forage species are required. We tested the performance of a modern variety of Festuca arundinacea and Phleum pratense as an alternative to Lolium perenne on clay, peat, and sandy soils. Each of these grasses was sown as main species in mixture with Poa pratensis and Trifolium repens and the mixtures were subjected to different frequencies of defoliation. Differences in yield proportions in the third year were significantly influenced by main species, site and their interaction. Remaining mass proportions of main species after three years were smallest on peat; on all sites Festuca arundinacea showed the highest persistence and largest yield, followed by Lolium perenne. Mass proportions of Phleum pratense were small on peat soils and Phleum had been replaced there by Holcus lanatus, and by Lolium perenne and Poa pratensis on the clay and sandy soils. We conclude that the choice of grass species in mixtures is a management tool to control stability and productivity of grass swards under specific site conditions.



1990 ◽  
Vol 4 (2) ◽  
pp. 245-249 ◽  
Author(s):  
Brenda S. Smith ◽  
Don S. Murray ◽  
J. D. Green ◽  
Wan M. Wanyahaya ◽  
David L. Weeks

Barnyardgrass, large crabgrass, and Texas panicum were evaluated in field experiments over 3 yr to measure their duration of interference and density on grain sorghum yield. When grain yield data were converted to a percentage of the weed-free control, linear regression predicted a 3.6% yield loss for each week of weed interference regardless of year or grass species. Grain sorghum grown in a narrow (61-cm) row spacing was affected little by full-season interference; however, in wide (91-cm) rows, interference increased as grass density increased. Data from the wide-row spacing were described by linear regression following conversion of grain yield to percentages and weed density to log10. A separate nonlinear model also was derived which could predict the effect of weed density on grain sorghum yield.



Author(s):  
M Gonzalez Yanez ◽  
R Mcginn ◽  
D H Anderson ◽  
A R Henderson ◽  
P Phillips

It Is claimed that the use of the correct enzyme system as an additive on grass silage will satisfactorily control the fermentation and reduce the cell-wall fibre content, thus preserving the nutrients In the silage and aiding their utilisation by the animal (Henderson and McDonald, 1977; Huhtanen et al, 1985; Raurama et al, 1987; Chamberlain and Robertson, 1989; Gordon, 1989;).The aim of the present experiment was to assess the effect of biological additives, enzymes or a combination of enzymes with an Inoculum of lactic acid bacteria, on the composition of silage and on its nutritive value when offered to store lambs as the sole constituent of their diet.On 1st June 1988, first cut perennial ryegrass (Lolium perenne L) at pre-ear emergence was ensiled direct cut untreated (U), treated with a commercial enzyme (E) or with a commercial inoculum of lactic acid bacteria with enzymes (I) in 6t capacity bunker silos. The grass was cut with a mower and lifted with a New Holland precision chop forage harvester. The additives were pumped onto the grass using a dribble bar sited over the pick-up drum.



Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 307-314 ◽  
Author(s):  
J King ◽  
L A Roberts ◽  
M J Kearsey ◽  
H M Thomas ◽  
R N Jones ◽  
...  

Abstract A single chromosome of the grass species Festuca pratensis has been introgressed into Lolium perenne to produce a diploid monosomic substitution line (2n = 2x = 14). The chromatin of F. pratensis and L. perenne can be distinguished by genomic in situ hybridization (GISH), and it is therefore possible to visualize the substituted F. pratensis chromosome in the L. perenne background and to study chiasma formation in a single marked bivalent. Recombination occurs freely in the F. pratensis/L. perenne bivalent, and chiasma frequency counts give a predicted map length for this bivalent of 76 cM. The substituted F. pratensis chromosome was also mapped with 104 EcoRI/Tru91 and HindIII/Tru91 amplified fragment length polymorphisms (AFLPs), generating a marker map of 81 cM. This map length is almost identical to the map length of 76 cM predicted from the chiasma frequency data. The work demonstrates a 1:1 correspondence between chiasma frequency and recombination and, in addition, the absence of chromatid interference across the Festuca and Lolium centromeres.



2020 ◽  
Vol 98 (11) ◽  
Author(s):  
Prem Woli ◽  
Francis M Rouquette ◽  
Charles R Long ◽  
Luis O Tedeschi ◽  
Guillermo Scaglia

Abstract In forage-animal nutrition modeling, diet energy is estimated mainly from the forage total digestible nutrients (TDN). As digestibility trials are expensive, TDN is usually estimated using summative equations. Early summative equations assumed a fixed coefficient to compute digestible fiber using the lignin-to-neutral detergent fiber (NDF) ratio. Subsequently, a structural coefficient (φ) was added to the summative equations to reflect an association between lignin and cell wall components. Additional modifications to the summative equations assumed a constant φ value, and they have been used as a standard method by many commercial laboratories and scientists. For feeds with nutritive values that do not change much over time, a constant φ value may suffice. However, for forages with nutritive values that keep changing during the grazing season owing to changes in weather and plant maturity, a constant φ value may add a systematic bias to prediction because it is associated with the variable lignin-to-NDF ratio. In this study, we developed a model to estimate φ as a function of the day of the year by using the daily TDN values of bermudagrass [Cynodon dactylon (L.) Pers.], a popular warm-season perennial grass in the southern United States. The variable φ model was evaluated by using it in the TDN equation and comparing the estimated values with the observed ones obtained from several locations. Values of the various measures of fit used—the Willmott index (WI), the modeling efficiency (ME), R2, root mean square error (RMSE), and percent error (PE)—showed that using the variable φ vis-à-vis the constant φ improved the TDN equation significantly. The WI, ME, R2, RMSE, and PE values of 0.94, 0.80, 0.80, 2.5, and 4.7, respectively, indicated that the TDN equation with the variable φ model was able to mimic the observed values of TDN satisfactorily. Unlike the constant φ, the variable φ predicted more closely the forage nutritive value throughout the grazing season. The variable φ model may be useful to forage-beef modeling in accurately reflecting the impacts of plant maturity and weather on daily forage nutritive value and animal performance.



2012 ◽  
Vol 554-556 ◽  
pp. 1553-1558
Author(s):  
Sheng Jun Chen ◽  
Lai Hao Li ◽  
Xian Qing Yang ◽  
Bo Qi ◽  
Yan Yan Wu ◽  
...  

The nutritional components in the cuttlefish muscle were analyzed and the nutritive quality was evaluated in the paper. The results showed that the contents of the cuttlefish muscle in crude protein, crude fat, carbohydrate were 16.60%, 0.86%, 1.30%, respectively. There were 18 kinds amino acids and the total amino acids reached 17.44%, with an essential amino acid index(EAAI) of 67.95. The composition of the essential amino acids in muscle ratio was consistent with the FAO/WHO standards. In addition, the contents of saturated fatty acids, monounsaturated fatty acids and polyunsaturated fatty acids were 41.13%, 12.15% and 46.72%, respectively. And the muscle contains a higher content of EPA and DHA, reached 11.0% and 24.49%, respectively. It was considered that the cuttlefish muscle has a high nutritive value and it can be the important material of the high quality protein and unsaturated fatty acid.



Sign in / Sign up

Export Citation Format

Share Document