Fungicide Application Timing and Row Spacing Effect on Soybean Canopy Penetration and Grain Yield

2008 ◽  
Vol 100 (5) ◽  
pp. 1488-1492 ◽  
Author(s):  
Shane O. Hanna ◽  
Shawn P. Conley ◽  
Gregory E. Shaner ◽  
Judith B. Santini
cftm ◽  
2021 ◽  
Author(s):  
Chase Alan Floyd ◽  
J Trent Irby ◽  
Tom W. Allen ◽  
Angus L. Catchot ◽  
Darrin M. Dodds ◽  
...  

2005 ◽  
Vol 85 (1) ◽  
pp. 265-270 ◽  
Author(s):  
John T. O’Donovan ◽  
George W. Clayton ◽  
K. Neil Harker ◽  
Adrian M. Johnston ◽  
T. Kelly Turkington ◽  
...  

A field experiment was conducted at Lacombe and Beaverlodge, AB, and Melfort, SK, in 1999 and 2000 to evaluate the effect of seed placement and herbicide application timing on productivity of a general purpose (AC Lacombe) and hull-less (Falcon) barley (Hordeum vulgare L.) cultivars. Barley plant density was often less and dockage greater when seed was spread in a 20-cm band with 28-cm sweeps spaced 23 cm apart compared to seeding in distinct rows with hoe openers spaced 23 or 30 cm apart. Method of seed placement had little effect on barley grain yield or yield was significantly lower with the sweep compared to the distinct rows. Herbicide application timing effects were variable for barley grain yield. Grain yield was often greater and dockage less when herbicides were applied at the one- to two- or three- to four-leaf stage of barley compared to the five- to six-leaf stage. Method of seed placement did not influence barley responses to time of herbicide application with either cultivar. Barley silage yield was mainly higher with the distinct 23-cm row spacing than with the other seed placement methods. Herbicide application timing did not affect silage yield. Key words: Hull-less barley (Hordeum vulgare L.), row spacing, seed-bed utilization, silage, sweep, hoe openers


2007 ◽  
Vol 21 (1) ◽  
pp. 186-190 ◽  
Author(s):  
Kelly A. Nelson

Field research was conducted in 2002 and 2003 to determine the effect of twin- and single-row spacing and POST glyphosate application timing on light interception, weed control, and grain yield of glyphosate-resistant corn and soybean. Row spacing did not affect light interception measured 10 to 11 wk after planting. Corn grain yield in 2002 was 1.0 Mg/ha higher in single rows compared with twin rows when averaged over glyphosate timing, but was unaffected by row spacing in 2003. Soybean grain yield was similar in 19- and 38-cm single rows, and single-row grain yield was 0.2 to 0.4 Mg/ha higher than the twin-row spacing. Corn grain yields were similar to the weed-free control when glyphosate was applied to weeds 10 to 15 cm tall in 2002 and 10 cm tall in 2003. Soybean yield was maximized by application of glyphosate to weeds 15 to 30 cm tall in 2002 and 60 cm tall in 2003.


Author(s):  
Nathan Kleczewski ◽  
Andrew Kness ◽  
Alyssa Koehler

Double cropped soybeans are planted on approximately 1/3 of crop acres in the Chesapeake Bay region of the United States. Producers have asked if foliar fungicides are required to optimize yields in this region. We assessed the impacts of foliar fungicide application timing and row spacing on foliar disease, greenstem, and yield from 11 site years spanning 2017-2019. Foliar diseases only developed at rateable levels in one location. Fungicide application, regardless of timing, increased percent greenstem over non-treated controls. Fungicide application did not impact soybean yield. Yield was greater in 38.1 cm rows when compared to 19 cm rows. Our data do not support the use of foliar fungicides in double cropped soybean production in this region.


1990 ◽  
Vol 4 (2) ◽  
pp. 245-249 ◽  
Author(s):  
Brenda S. Smith ◽  
Don S. Murray ◽  
J. D. Green ◽  
Wan M. Wanyahaya ◽  
David L. Weeks

Barnyardgrass, large crabgrass, and Texas panicum were evaluated in field experiments over 3 yr to measure their duration of interference and density on grain sorghum yield. When grain yield data were converted to a percentage of the weed-free control, linear regression predicted a 3.6% yield loss for each week of weed interference regardless of year or grass species. Grain sorghum grown in a narrow (61-cm) row spacing was affected little by full-season interference; however, in wide (91-cm) rows, interference increased as grass density increased. Data from the wide-row spacing were described by linear regression following conversion of grain yield to percentages and weed density to log10. A separate nonlinear model also was derived which could predict the effect of weed density on grain sorghum yield.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1295
Author(s):  
Ahossi Patrice Koua ◽  
Mirza Majid Baig ◽  
Benedict Chijioke Oyiga ◽  
Jens Léon ◽  
Agim Ballvora

Nitrogen (N) is a vital component of crop production. Wheat yield varies significantly under different soil available N. Knowing how wheat responds to or interacts with N to produce grains is essential in the selection of N use efficient cultivars. We assessed in this study variations among wheat genotypes for productivity-related traits under three cropping systems (CS), high-nitrogen with fungicide (HN-WF), high-nitrogen without fungicide (HN-NF) and low-nitrogen without fungicide (LN-NF) in the 2015, 2016 and 2017 seasons. ANOVA results showed genotypes, CS, and their interactions significantly affected agronomic traits. Grain yield (GY) increased with higher leaf chlorophyll content, importantly under CS without N and fungicide supply. Yellow rust disease reduced the GY by 20% and 28% in 2015 and 2016, respectively. Moreover, averaged over growing seasons, GY was increased by 23.78% under CS with N supply, while it was greatly increased, by 52.84%, under CS with both N and fungicide application, indicating a synergistic effect of N and fungicide on GY. Fungicide supply greatly improved the crop ability to accumulate N during grain filling, and hence the grain protein content. Recently released cultivars outperformed the older ones in most agronomic traits including GY. Genotype performance and stability analysis for GY production showed differences in their stability levels under the three CS. The synergistic effect of nitrogen and fungicide on grain yield (GY) and the differences in yield stability levels of recently released wheat cultivars across three CS found in this study suggest that resource use efficiency can be improved via cultivar selection for targeted CS.


Sign in / Sign up

Export Citation Format

Share Document