scholarly journals Soil pH, Soil Organic Matter, and Crop Yields in Winter Wheat-Summer Fallow Systems

2017 ◽  
Vol 109 (2) ◽  
pp. 706-717 ◽  
Author(s):  
Rajan Ghimire ◽  
Stephen Machado ◽  
Prakriti Bista
Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 448
Author(s):  
Mahrous Awad ◽  
Zhongzhen Liu ◽  
Milan Skalicky ◽  
Eldessoky S. Dessoky ◽  
Marian Brestic ◽  
...  

Heavy metals (HMs) toxicity represents a global problem depending on the soil environment’s geochemical forms. Biochar addition safely reduces HMs mobile forms, thus, reducing their toxicity to plants. While several studies have shown that biochar could significantly stabilize HMs in contaminated soils, the study of the relationship of soil properties to potential mechanisms still needs further clarification; hence the importance of assessing a naturally contaminated soil amended, in this case with Paulownia biochar (PB) and Bamboo biochar (BB) to fractionate Pb, Cd, Zn, and Cu using short sequential fractionation plans. The relationship of soil pH and organic matter and its effect on the redistribution of these metals were estimated. The results indicated that the acid-soluble metals decreased while the fraction bound to organic matter increased compared to untreated pots. The increase in the organic matter metal-bound was mostly at the expense of the decrease in the acid extractable and Fe/Mn bound ones. The highest application of PB increased the organically bound fraction of Pb, Cd, Zn, and Cu (62, 61, 34, and 61%, respectively), while the BB increased them (61, 49, 42, and 22%, respectively) over the control. Meanwhile, Fe/Mn oxides bound represents the large portion associated with zinc and copper. Concerning soil organic matter (SOM) and soil pH, as potential tools to reduce the risk of the target metals, a significant positive correlation was observed with acid-soluble extractable metal, while a negative correlation was obtained with organic matter-bound metal. The principal component analysis (PCA) shows that the total variance represents 89.7% for the TCPL-extractable and HMs forms and their relation to pH and SOM, which confirms the positive effect of the pH and SOM under PB and BB treatments on reducing the risk of the studied metals. The mobility and bioavailability of these metals and their geochemical forms widely varied according to pH, soil organic matter, biochar types, and application rates. As an environmentally friendly and economical material, biochar emphasizes its importance as a tool that makes the soil more suitable for safe cultivation in the short term and its long-term sustainability. This study proves that it reduces the mobility of HMs, their environmental risks and contributes to food safety. It also confirms that performing more controlled experiments, such as a pot, is a disciplined and effective way to assess the suitability of different types of biochar as soil modifications to restore HMs contaminated soil via controlling the mobilization of these minerals.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1326
Author(s):  
Calvin F. Glaspie ◽  
Eric A. L. Jones ◽  
Donald Penner ◽  
John A. Pawlak ◽  
Wesley J. Everman

Greenhouse studies were conducted to evaluate the effects of soil organic matter content and soil pH on initial and residual weed control with flumioxazin by planting selected weed species in various lab-made and field soils. Initial control was determined by planting weed seeds into various lab-made and field soils treated with flumioxazin (71 g ha−1). Seeds of Echinochloa crus-galli (barnyard grass), Setaria faberi (giant foxtail), Amaranthus retroflexus (redroot pigweed), and Abutilon theophrasti (velvetleaf) were incorporated into the top 1.3 cm of each soil at a density of 100 seeds per pot, respectively. Emerged plants were counted and removed in both treated and non-treated pots two weeks after planting and each following week for six weeks. Flumioxazin control was evaluated by calculating percent emergence of weeds in treated soils compared to the emergence of weeds in non-treated soils. Clay content was not found to affect initial flumioxazin control of any tested weed species. Control of A. theophrasti, E. crus-galli, and S. faberi was reduced as soil organic matter content increased. The control of A. retroflexus was not affected by organic matter. Soil pH below 6 reduced flumioxazin control of A. theophrasti, and S. faberi but did not affect the control of A. retroflexus and E. crus-galli. Flumioxazin residual control was determined by planting selected weed species in various lab-made and field soils 0, 2, 4, 6, and 8 weeks after treatment. Eight weeks after treatment, flumioxazin gave 0% control of A. theophrasti and S. faberi in all soils tested. Control of A. retroflexus and Chenopodium album (common lambsquarters) was 100% for the duration of the experiment, except when soil organic matter content was greater than 3% or the soil pH 7. Eight weeks after treatment, 0% control was only observed for common A. retroflexus and C. album in organic soil (soil organic matter > 80%) or when soil pH was above 7. Control of A. theophrasti and S. faberi decreased as soil organic matter content and soil pH increased. Similar results were observed when comparing lab-made soils to field soils; however, differences in control were observed between lab-made organic matter soils and field organic matter soils. Results indicate that flumioxazin can provide control ranging from 75–100% for two to six weeks on common weed species.


2020 ◽  
Vol 118 (3) ◽  
pp. 325-334
Author(s):  
Wytse J. Vonk ◽  
Martin K. van Ittersum ◽  
Pytrik Reidsma ◽  
Laura Zavattaro ◽  
Luca Bechini ◽  
...  

AbstractA number of policies proposed to increase soil organic matter (SOM) content in agricultural land as a carbon sink and to enhance soil fertility. Relations between SOM content and crop yields however remain uncertain. In a recent farm survey across six European countries, farmers reported both their crop yields and their SOM content. For four widely grown crops (wheat, grain maize, sugar beet and potato), correlations were explored between reported crop yields and SOM content (N = 1264). To explain observed variability, climate, soil texture, slope, tillage intensity, fertilisation and irrigation were added as co-variables in a linear regression model. No consistent correlations were observed for any of the crop types. For wheat, a significant positive correlation (p < 0.05) was observed between SOM and crop yields in the Continental climate, with yields being on average 263 ± 4 (95% CI) kg ha−1 higher on soils with one percentage point more SOM. In the Atlantic climate, a significant negative correlation was observed for wheat, with yields being on average 75 ± 2 (95%CI) kg ha−1 lower on soils with one percentage point more SOM (p < 0.05). For sugar beet, a significant positive correlation (p < 0.05) between SOM and crop yields was suggested for all climate zones, but this depended on a number of relatively low yield observations. For potatoes and maize, no significant correlations were observed between SOM content and crop yields. These findings indicate the need for a diversified strategy across soil types, crops and climates when seeking farmers’ support to increase SOM.


Solid Earth ◽  
2016 ◽  
Vol 7 (2) ◽  
pp. 549-556 ◽  
Author(s):  
Linyou Lü ◽  
Ruzhen Wang ◽  
Heyong Liu ◽  
Jinfei Yin ◽  
Jiangtao Xiao ◽  
...  

Abstract. Soil coarseness is the main process decreasing soil organic matter and threatening the productivity of sandy grasslands. Previous studies demonstrated negative effect of soil coarseness on soil carbon storage, but less is known about how soil base cations (exchangeable Ca, Mg, K, and Na) and available micronutrients (available Fe, Mn, Cu, and Zn) response to soil coarseness. In a semi-arid grassland of Northern China, a field experiment was initiated in 2011 to mimic the effect of soil coarseness on soil base cations and available micronutrients by mixing soil with different mass proportions of sand: 0 % coarse elements (C0), 10 % (C10), 30 % (C30), 50 % (C50), and 70 % (C70). Soil coarseness significantly increased soil pH in three soil depths of 0–10, 10–20 and 20–40 cm with the highest pH values detected in C50 and C70 treatments. Soil fine particles (smaller than 0.25 mm) significantly decreased with the degree of soil coarseness. Exchangeable Ca and Mg concentrations significantly decreased with soil coarseness degree by up to 29.8 % (in C70) and 47.5 % (in C70), respectively, across three soil depths. Soil available Fe, Mn, and Cu significantly decreased with soil coarseness degree by 62.5, 45.4, and 44.4 %, respectively. As affected by soil coarseness, the increase of soil pH, decrease of soil fine particles (including clay), and decline in soil organic matter were the main driving factors for the decrease of exchangeable base cations (except K) and available micronutrients (except Zn) through soil profile. Developed under soil coarseness, the loss and redistribution of base cations and available micronutrients along soil depths might pose a threat to ecosystem productivity of this sandy grassland.


1996 ◽  
Vol 21 (1) ◽  
pp. 352-352
Author(s):  
Stanley R. Swier

Abstract The trial was conducted 10 May on a golf course rough, Amherst, NH. Plots were 10 X 10 ft, replicated 4 times, in a RCB design. Merit WP was applied in 4 gal water/1000 ft2 with a watering, can. Merit G granules were applied with a homemade salt shaker. Treatments were irrigated with 0.5 inch water after application. Plots were rated 30 Sep by counting the number of live grubs per 1 ft2. Conditions at the time of treatment were: air temperature 70°F; wind, 3 MPH; sky, clear; soil temperature, 1 inch, 60°F; thatch depth, 0.5 inch soil pH, 5.4; slope 0%; soil texture, silt loam, 47% sand, 50% silt, 3% clay; soil organic matter, 6.9%; soil moisture, 21.8%.


2019 ◽  
Vol 4 (1) ◽  
pp. 187-202
Author(s):  
Walter A. Goldstein ◽  
Herbert H. Koepf ◽  
Chris J. Koopmans

AbstractThe effects of biodynamic preparations were tested in the context of comparisons of conventional, organic, and biodynamic systems and diverse crop rotations in Washington and Wisconsin, USA. Wisconsin research also entailed testing a new nettle-and-manure-based field spray preparation (NCP). Focus was on winter wheat and maize and on soil quality. In Washington, preparations increased root growth of winter wheat, microbial biomass, and soil organic matter. In Wisconsin, applying a combination of preparations that included NCP increased root growth of maize, root health, and particulate organic matter in the soil. Relative to the organic treatments, root dry matter increases associated with the use of preparations varied from 12% to 39% and root length differences varied from 10% to 37% depending on the experiment, crop, year, and preparation application. The biodynamic + NCP treatment also induced substantial, positive yield compensatory effects for maize and wheat under stress condition years. The response slopes were practically identical for wheat and maize, indicating that the effect is of the same magnitude for both crops. Results were higher average grain yields and gross financial returns than for organic grain. The greater root production and root health stimulated by preparations is probably linked to greater vegetative growth, enhanced yield under stress conditions, and increased soil quality and carbon in soils.


Soil Science ◽  
1954 ◽  
Vol 77 (5) ◽  
pp. 377-388 ◽  
Author(s):  
R. M. SMITH ◽  
D. O. THOMPSON ◽  
J. W. COLLIER ◽  
R. J. HERVEY

2020 ◽  
Author(s):  
José A. González-Pérez ◽  
Gael Bárcenas.Moreno ◽  
Nicasio T Jiménez-Morillo ◽  
María Colchero-Asensio ◽  
Layla M. San Emeterio ◽  
...  

&lt;p&gt;&lt;strong&gt;Keywords: &lt;/strong&gt;Soil reaction, analytical pyrolysis, soil respiration, carbon stabilization&lt;/p&gt;&lt;p&gt;During the last decade, soil organic matter dynamics and its determining factors have received increased attention, mainly due to the evident implication of these parameters in climate change understanding, predictions and possible management. High-mountain soil could be considered as hotspot of climate change dynamic since its high carbon accumulation and low organic matter degradation rates could be seriously altered by slight changes in temperature and rainfall regimes associated to climate change effects. In the particular case of Sierra Nevada National Park, this threat could be even stronger due to its Southern character, although its elevated biodiversity could shed some light on how could we predict and manage climate change in the future.&lt;/p&gt;&lt;p&gt;In this study, a quantitative and qualitative organic matter characterization was performed and soil microbial activity measured to evaluate the implication of pH and vegetation in soil organic matter dynamics.&lt;/p&gt;&lt;p&gt;The sampling areas were selected according to vegetation and soil pH; with distinct soil pH (area A with pH&lt;7 and area B with pH&gt;7) and vegetation (high-mountain shrubs and pine reforested area). Soil samples were collected under the influence of several plant species representatives of each vegetation series. Six samples were finally obtained (five replicates each); three were collected in area A under&lt;em&gt; Juniperus communis&lt;/em&gt; ssp. Nana (ENE), &lt;em&gt;Genista versicolor&lt;/em&gt; (PIO) and &lt;em&gt;Pinus sylvestris&lt;/em&gt; (PSI) and other three were collected in area B under&lt;em&gt; Juniperus Sabina&lt;/em&gt; (SAB), &lt;em&gt;Astragalus nevadensis&lt;/em&gt; (AST) and &lt;em&gt;Pinus sylvestris&lt;/em&gt; (PCA).&lt;/p&gt;&lt;p&gt;Qualitative and quantitative analyses of soil organic matter were made to establish a possible relationship with microbial activity estimated by respiration rate (alkali trap) and fungi-to-bacteria ratio using a plate count method. Soil easily oxidizable organic carbon content was determined by the Walkley-Black method (SOC %) and organic matter amount was estimated by weight loss on ignition (LOI %). Analytical pyrolysis (Py-GC/MS) was used to analyse in detail the soil organic carbon composition.&lt;/p&gt;&lt;p&gt;Our results showed that the microbial and therefore the dynamics of organic matter is influenced by both, soil pH and soil of organic matter. So that the pH in acidic media prevail as a determining factor of microbial growth over soil organic matter composition conditioned by vegetation.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Acknowledgement&lt;/strong&gt;: Ministerio de Ciencia Innovaci&amp;#243;n y Universidades (MICIU) for INTERCARBON project (CGL2016-78937-R). N.T. Jim&amp;#233;nez-Morillo and L. San Emeterio also thanks MICIU for funding FPI research grants (BES-2013-062573 and Ref. BES-2017-07968). Mrs Desir&amp;#233; Monis is acknowledged for technical assistance.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document