m 6A Modification of circSPECC1 Attenuates AMD by Triggering RPE Oxidative Damages and Disturbing Retinal Homeostasis

2022 ◽  
Author(s):  
Xue Chen ◽  
Ying Wang ◽  
Jia-Nan Wang ◽  
Ru-Xu Sun ◽  
Hong-Jing Zhu ◽  
...  
Keyword(s):  
2020 ◽  
Vol 21 (6) ◽  
pp. 480-487
Author(s):  
Med A. Smach ◽  
Jawhar Hafsa ◽  
Bassem Charfeddine ◽  
Hedi Dridi ◽  
Khalifa Limem ◽  
...  

Background: Arthrophytum scoparium (Pomel) Iljin (Amaranthaceae family) has been widely used in traditional Tunisian medicine to treat many disorders such as migraine, headache, and neurological disorders. This study investigates the effect of Arthrophytum scoparium Aqueous Extract (ASAE) on cognitive impairments and oxidative injury induced by galactose (10%) in a mouse model. Materials and Methods: The mice were divided randomly into 4 experimental groups, including the control group (saline water 9 ‰), Galactose group, Scop group (300 mg/kg/d), and Scop+Gal group (300 mg/kg/d). Mice received the corresponding solutions by intraperitoneal injection (i.p.) for 7 days before the Y-maze active tests. Galactose 10% was given to all groups except control and Scop groups, 30 min before the trial. Levels of Acetylcholinesterase Activity (AChE), Ascorbic Acid (AA), Gluthatione (GSH) and Malondialdehyde (MDA) in mice brains were examined. Results: Chronic administration of galactose significantly impaired cognitive performance in Y maze, caused marked oxidative damages and a significant increase in the acetylcholinesterase activity as compared to other groups. On the contrary, ASAE (300 mg/kg) treatment suppressed galactoseinduced oxidative damage by ameliorating the increased levels of GSH and AA. Moreover, ASAE treatment reduced brain AChE activities in the galactose-induced model. Conclusion: These findings suggest that ASAE exerts potent anti-amnesic effects via the modulation of cholinergic and antioxidant activities. The observed pharmacological activities should be further evaluated by detailed experimental studies and validated by clinical trials.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xin Yang ◽  
Di Zhang ◽  
Li-min Song ◽  
Qian Xu ◽  
Hong Li ◽  
...  

Peony seed oil (PSO) is a novel vegetable oil developed from the seeds of Paeonia suffruticosa Andr. The present study aimed to make an overall investigation on the chemical profile and antioxidant activities of PSO for reasonable development and utilization of this new resource food. Chemical analysis revealed that PSO was characterized by an uncommon high portion of α-linolenic acid (>38%), fairly low ratio of n-6 to n-3 polyunsaturated fatty acids (0.69), and much higher content of γ-tocopherol than various conventional seed oils. In vitro assay indicated that PSO is a more potent scavenger of free radicals than extra virgin olive oil. Moderate intake of PSO exhibited obvious protection against various oxidative damages such as tetrachloromethane-induced acute liver injury in mice and diet-induced hyperlipidemia in rats. The changes in the key indicators of oxidative injury and fatty acid composition in the liver caused by PSO administration were measured, and the results demonstrated that antioxidant properties of PSO are closely related to their characteristic chemical composition. Consequently, the present study provided new evidence for the health implications of PSO, which deserves further development for medical and nutritional use against oxidative damages that are associated with various diseases.


2021 ◽  
Author(s):  
Baozhu Li ◽  
Ruonan Fan ◽  
Guiling Sun ◽  
Ting Sun ◽  
Yanting Fan ◽  
...  

Abstract Background and aims As drought threatens the yield and quality of maize (Zea mays L.), it is important to dissect the molecular basis of maize drought tolerance. Flavonoids, participate in the scavenging of oxygen free radicals and alleviate stress-induced oxidative damages. This study aims to dissect the function of flavonoids in the improvement of maize drought tolerance. Methods Using far-infrared imaging screening, we previously isolated a drought overly insensitivity (doi) mutant from an ethyl methanesulfonate (EMS)-mutagenized maize library and designated it as doi57. In this study, we performed a physiological characterization and transcriptome profiling of doi57 in comparison to corresponding wild-type B73 under drought stress. Results Under drought stress, doi57 seedlings displayed lower leaf-surface temperature (LST), faster water loss, and better performance in growth than B73. Transcriptome analysis reveals that key genes involved in flavonoid biosynthesis are enriched among differentially expressed genes in doi57. In line with these results, more flavonols and less hydrogen peroxide (H2O2) were accumulated in guard cells of doi57 than in those of B73 with the decrease of soil water content (SWC). Moreover, the capacity determined from doi57 seedling extracts to scavenge oxygen free radicals was more effective than that of B73 under the drought treatment. Additionally, doi57 seedlings had higher photosynthetic rates, stomatal conductance, transpiration rates, and water use efficiency than B73 exposed to drought stress, resulting in high biomass and greater root/shoot ratios in doi57 mutant plants. Conclusion Flavonoids may facilitate maize seedling drought tolerance by lowering drought-induced oxidative damage as well regulating stomatal movement.


2021 ◽  
Vol 22 (5) ◽  
pp. 2633
Author(s):  
Giuseppina Adiletta ◽  
Marisa Di Matteo ◽  
Milena Petriccione

Chitosan-based edible coatings represent an eco-friendly and biologically safe preservative tool to reduce qualitative decay of fresh and ready-to-eat fruits during post-harvest life due to their lack of toxicity, biodegradability, film-forming properties, and antimicrobial actions. Chitosan-based coatings modulate or control oxidative stress maintaining in different manner the appropriate balance of reactive oxygen species (ROS) in fruit cells, by the interplay of pathways and enzymes involved in ROS production and the scavenging mechanisms which essentially constitute the basic ROS cycle. This review is carried out with the aim to provide comprehensive and updated over-view of the state of the art related to the effects of chitosan-based edible coatings on anti-oxidant systems, enzymatic and non-enzymatic, evaluating the induced oxidative damages during storage in whole and ready-to-eat fruits. All these aspects are broadly reviewed in this review, with particular emphasis on the literature published during the last five years.


Author(s):  
Luciano Acordi da Silva ◽  
Lorhan da Silva Menguer ◽  
Ramiro Doyenart ◽  
Daniel Boeira ◽  
Yuri Pinheiro Milhomens ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1107
Author(s):  
Marie-Albane Minati ◽  
Maxime Libert ◽  
Hajar Dahou ◽  
Patrick Jacquemin ◽  
Mohamad Assi

Pancreatitis, an inflammation of the pancreas, appears to be a main driver of pancreatic cancer when combined with Kras mutations. In this context, the exact redox mechanisms are not clearly elucidated. Herein, we treated mice expressing a KrasG12D mutation in pancreatic acinar cells with cerulein to induce acute pancreatitis. In the presence of KrasG12D, pancreatitis triggered significantly greater redox unbalance and oxidative damages compared to control mice expressing wild-type Kras alleles. Further analyses identified the disruption in glutathione metabolism as the main redox event occurring during pancreatitis. Compared to the wild-type background, KrasG12D-bearing mice showed a greater responsiveness to treatment with a thiol-containing compound, N-acetylcysteine (NAC). Notably, NAC treatment increased the pancreatic glutathione pool, reduced systemic markers related to pancreatic and liver damages, limited the extent of pancreatic edema and fibrosis as well as reduced systemic and pancreatic oxidative damages. The protective effects of NAC were, at least, partly due to a decrease in the production of tumor necrosis factor-α (TNF-α) by acinar cells, which was concomitant with the inhibition of NF-κB(p65) nuclear translocation. Our data provide a rationale to use thiol-containing compounds as an adjuvant therapy to alleviate the severity of inflammation during pancreatitis and pancreatic tumorigenesis.


2017 ◽  
Vol 313 (6) ◽  
pp. R646-R653 ◽  
Author(s):  
Mohamad Assi

The large doses of vitamins C and E and β-carotene used to reduce reactive oxygen species (ROS) production and oxidative damages in cancerous tissue have produced disappointing and contradictory results. This therapeutic conundrum was attributed to the double-faced role of ROS, notably, their ability to induce either proliferation or apoptosis of cancer cells. However, for a ROS-inhibitory approach to be effective, it must target ROS when they induce proliferation rather than apoptosis. On the basis of recent advances in redox biology, this review underlined a differential regulation of prooxidant and antioxidant system, respective to the stage of cancer. At early precancerous and neoplastic stages, antioxidant activity decreases and ROS appear to promote cancer initiation via inducing oxidative damage and base pair substitution mutations in prooncogenes and tumor suppressor genes, such as RAS and TP53, respectively. Whereas in late stages of cancer progression, tumor cells escape apoptosis by producing high levels of intracellular antioxidants, like NADPH and GSH, via the pentose phosphate pathway to buffer the excessive production of ROS and related intratumor oxidative injuries. Therefore, antioxidants should be prohibited in patients with advanced stages of cancer and/or undergoing anticancer therapies. Interestingly, the biochemical and biophysical properties of some polyphenols allow them to selectively recognize tumor cells. This characteristic was exploited to design and deliver nanoparticles coated with low doses of polyphenols and containing chemotherapeutic drugs into tumor-bearing animals. First results are encouraging, which may revolutionize the conventional use of antioxidants in cancer.


2006 ◽  
Vol 63 (6) ◽  
pp. 545-551 ◽  
Author(s):  
Marina Vuceljic ◽  
Gordana Zunic ◽  
Predrag Romic ◽  
Miodrag Jevtic

Background/Aim. We have recently reported the development of oxidative cell damages in bombing casualties within a very early period after the initial injury. The aim of this study, was to investigate malondialdehyde (MDA), as an indicator of lipid peroxidation, and osmolal gap (OG), as a good indicator of metabolic cell damages and to assess their relationship with the initial severity of the injury in bombing casualties. Methods. The study included the males (n = 52), injured during the bombing with the Injury Severity Score (ISS) ranging from 3 to 66. The whole group of casualties was devided into a group of less severely (ISS < 25, n = 24) and a group of severely (ISS ? 26, n = 28) injured males. The uninjured volunteers (n = 10) were the controls. Osmolality, MDA, sodium, glucose, urea, creatinine, total bilirubin and total protein levels were measured in the venous blood, sampled daily, within a ten-day period. Results. In both groups of casualties, MDA and OG levels increased, total protein levels decreased, while other parameters were within the control limits. MDA alterations correlated with ISS (r = 0.414, p < 0.01), while a statistically significant correlation between OG and ISS was not obtained. Interestingly, in spite of some differences in MDA and OG trends, at the end of the examined period they were at the similar level in both groups. Conclusion. The initial oxidative damages of the cellular membrane with intracellular metabolic disorders contributed to the gradual development of metabolic-osmotic damages of cells, which, consequently caused the OG increase. In the bombing casualties, oxidative cell damages were dependent on the initial injury severity, while metabolic-osmotic cell damages were not.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Soudabeh Sabetian ◽  
Bahia Namavar Jahromi ◽  
Sina Vakili ◽  
Sedighe Forouhari ◽  
Shohreh Alipour

Background. Male infertility is a main clinical problem that affects about 7% of all men worldwide. Many patients with male infertility are caused by a reduced antioxidant capacity of semen. Several antioxidant supplements, especially vitamin E, are proposed to help male infertility treatment. This project was goaled to study the effects of oral synthetic vitamin E (400 IU/day) for eight weeks on betterment of semen parameters and pregnancy rate. Methods. After dropping the cases, 124 infertile couples with a male factor who were admitted to the IVF program were included. The male patients with idiopathic abnormal motility and/or morphology were randomized into two groups: 61 receiving vitamin E and 63 as the control group receiving placebo for eight weeks. The pretreatment semen parameters of both groups were compared with those of posttreatment. The pregnancy outcomes were considered between the two groups. Results. There were no significant differences statistically between before and after treatment in the term of sperm volume, count, motility, and morphology. Furthermore, the IVF outcomes of the two groups were not different significantly, either. Interestingly, the percent of normal sperm in the placebo group was significantly decreased after eight weeks. Conclusion. Vitamin E supplementation might neutralize free radical activity to keep sperm from more oxidative damages. Further studies regarding the influence of higher acceptable doses of vitamin E on semen characteristics and fertility rates are needed. This study was registered as a two-arm, blinded, randomized, placebo-controlled clinical trial (IRCTID: IRCT2014020616506N1, 2014-03-18).


Sign in / Sign up

Export Citation Format

Share Document