scholarly journals Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Bingshuo Li ◽  
Juha P Virtanen ◽  
Axel Oeltermann ◽  
Cornelius Schwarz ◽  
Martin A Giese ◽  
...  

Transcranial magnetic stimulation (TMS) is a widely used non-invasive tool to study and modulate human brain functions. However, TMS-evoked activity of individual neurons has remained largely inaccessible due to the large TMS-induced electromagnetic fields. Here, we present a general method providing direct in vivo electrophysiological access to TMS-evoked neuronal activity 0.8–1 ms after TMS onset. We translated human single-pulse TMS to rodents and unveiled time-grained evoked activities of motor cortex layer V neurons that show high-frequency spiking within the first 6 ms depending on TMS-induced current orientation and a multiphasic spike-rhythm alternating between excitation and inhibition in the 6–300 ms epoch, all of which can be linked to various human TMS responses recorded at the level of spinal cord and muscles. The advance here facilitates a new level of insight into the TMS-brain interaction that is vital for developing this non-invasive tool to purposefully explore and effectively treat the human brain.

2021 ◽  
Vol 12 ◽  
Author(s):  
Jessica Frey ◽  
Christopher W. Hess ◽  
Liam Kugler ◽  
Manahil Wajid ◽  
Aparna Wagle Shukla

Transcranial magnetic stimulation (TMS) is a painless, non-invasive, and established brain stimulation technique to investigate human brain function. Over the last three decades, TMS has shed insight into the pathophysiology of many neurological disorders. Tremor is an involuntary, rhythmic oscillatory movement disorder commonly related to pathological oscillations propagated via the cerebello-thalamo-cortical pathway. Although tremor is the most common movement disorder and recent imaging studies have enhanced our understanding of the critical pathogenic networks, the underlying pathophysiology of different tremor syndromes is complex and still not fully understood. TMS has been used as a tool to further our understanding of tremor pathophysiology. In addition, repetitive TMS (rTMS) that can modulate brain functions through plasticity effects has been targeted to the tremor network to gain potential therapeutic benefits. However, evidence is available for only a few studies that included small patient samples with limited clinical follow-up. This review aims to discuss the role of TMS in advancing the pathophysiological understanding as well as emerging applications of rTMS for treating individual tremor syndromes. The review will focus on essential tremor, Parkinson's disease tremor, dystonic tremor syndrome, orthostatic tremor, and functional tremor.


2021 ◽  
Author(s):  
Fang Jin ◽  
Sjoerd M Bruijn ◽  
Andreas Daffertshofer

Background: Single-pulse transcranial magnetic stimulation is a safe and non-invasive tool for investigating cortical representation of muscles in the primary motor cortex. While non-navigated TMS has been successfully applied to simultaneously induce motor-evoked potentials (MEPs) in multiple muscles, a more rigorous assessment of the corresponding cortical representation can greatly benefit from navigated transcranial magnetic stimulation (nTMS). Objective: We designed a protocol to map the entire precentral gyrus using neural navigation while recording responses of eight muscles simultaneously. Here, we evaluated the feasibility, validity, and reliability of this protocol. Method: Twenty participants underwent conventional (i.e., muscle-based, grid-constrained) and gyrus-based nTMS mapping. For both protocols, we investigated three different stimulation intensities during two consecutive sessions. Results: The gyrus-based nTMS mapping was received well by all participants and was less time consuming than the grid-constrained standard. On average, MEP amplitudes, latencies, and centre-of-gravity and size of the active areas largely agreed across protocols supporting validity. Intraclass coefficients between sessions unscored the reliability of our protocol. Conclusion: We designed an nTMS protocol for the simultaneous mapping multiple muscles on the cortex. The protocol takes only about ten minutes per participant when including as many as eight muscles. Our assessments revealed that the cortical representation of multiple muscles can be determined with high validity and reliability.


2021 ◽  
Author(s):  
Alexander D Tang ◽  
William Bennett ◽  
Aidan D Bindoff ◽  
Jessica Collins ◽  
Michael I Garry ◽  
...  

AbstractRepetitive transcranial magnetic stimulation (rTMS) is a non-invasive tool commonly used to drive neural plasticity in the young adult and aged brain. Recent data from mouse models have shown that even at low intensities (0.12 Tesla), rTMS can drive neuronal and glial plasticity in the motor cortex. However, the physiological mechanisms underlying low intensity rTMS (LI-rTMS) induced plasticity and whether these are altered with normal ageing are unclear. Using longitudinal in vivo 2-photon microscopy, we investigated the effect of LI-rTMS on the structural plasticity of pyramidal neuron dendritic spines in the motor cortex following a single train of LI-rTMS (in young adult and aged animals) or the same LI-rTMS train administered on 4 consecutive days (in young adult animals only). We found that LI-rTMS altered the rate of dendritic spine losses and gains, dependent on the number of stimulation sessions and that a single session of LI-rTMS was effective in driving structural synaptic plasticity in both young adult and aged mice. To our knowledge, these results provide the first in vivo evidence that rTMS drives synaptic plasticity in the brain and uncovers structural synaptic plasticity as a key mechanism of LI-rTMS induced plasticity.


Author(s):  
Anssam Bassem Mohy ◽  
Aqeel Kareem Hatem ◽  
Hussein Ghani Kadoori ◽  
Farqad Bader Hamdan

Abstract Background Transcranial magnetic stimulation (TMS) is a non-invasive procedure used in a small targeted region of the brain via electromagnetic induction and used diagnostically to measure the connection between the central nervous system (CNS) and skeletal muscle to evaluate the damage that occurs in MS. Objectives The study aims to investigate whether single-pulse TMS measures differ between patients with MS and healthy controls and to consider if these measures are associated with clinical disability. Patients and methods Single-pulse TMS was performed in 26 patients with MS who hand an Expanded Disability Status Scale (EDSS) score between 0 and 9.5 and in 26 normal subjects. Different TMS parameters from upper and lower limbs were investigated. Results TMS disclosed no difference in all MEP parameters between the right and left side of the upper and lower limbs in patients with MS and controls. In all patients, TMS parameters were different from the control group. Upper limb central motor conduction time (CMCT) was prolonged in MS patients with pyramidal signs. Upper and lower limb CMCT and CMCT-f wave (CMCT-f) were prolonged in patients with ataxia. Moreover, CMCT and CMCT-f were prolonged in MS patients with EDSS of 5–9.5 as compared to those with a score of 0–4.5. EDSS correlated with upper and lower limb cortical latency (CL), CMCT, and CMCT-f whereas motor evoked potential (MEP) amplitude not. Conclusion TMS yields objective data to evaluate clinical disability and its parameters correlated well with EDSS.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Domenica Veniero ◽  
Joachim Gross ◽  
Stephanie Morand ◽  
Felix Duecker ◽  
Alexander T. Sack ◽  
...  

AbstractVoluntary allocation of visual attention is controlled by top-down signals generated within the Frontal Eye Fields (FEFs) that can change the excitability of lower-level visual areas. However, the mechanism through which this control is achieved remains elusive. Here, we emulated the generation of an attentional signal using single-pulse transcranial magnetic stimulation to activate the FEFs and tracked its consequences over the visual cortex. First, we documented changes to brain oscillations using electroencephalography and found evidence for a phase reset over occipital sites at beta frequency. We then probed for perceptual consequences of this top-down triggered phase reset and assessed its anatomical specificity. We show that FEF activation leads to cyclic modulation of visual perception and extrastriate but not primary visual cortex excitability, again at beta frequency. We conclude that top-down signals originating in FEF causally shape visual cortex activity and perception through mechanisms of oscillatory realignment.


2021 ◽  
Vol 11 (4) ◽  
pp. 432
Author(s):  
Fiorenzo Moscatelli ◽  
Antonietta Messina ◽  
Anna Valenzano ◽  
Vincenzo Monda ◽  
Monica Salerno ◽  
...  

Transcranial magnetic stimulation, since its introduction in 1985, has brought important innovations to the study of cortical excitability as it is a non-invasive method and, therefore, can be used both in healthy and sick subjects. Since the introduction of this cortical stimulation technique, it has been possible to deepen the neurophysiological aspects of motor activation and control. In this narrative review, we want to provide a brief overview regarding TMS as a tool to investigate changes in cortex excitability in athletes and highlight how this tool can be used to investigate the acute and chronic responses of the motor cortex in sport science. The parameters that could be used for the evaluation of cortical excitability and the relative relationship with motor coordination and muscle fatigue, will be also analyzed. Repetitive physical training is generally considered as a principal strategy for acquiring a motor skill, and this process can elicit cortical motor representational changes referred to as use-dependent plasticity. In training settings, physical practice combined with the observation of target movements can enhance cortical excitability and facilitate the process of learning. The data to date suggest that TMS is a valid technique to investigate the changes in motor cortex excitability in trained and untrained subjects. Recently, interest in the possible ergogenic effect of non-invasive brain stimulation in sport is growing and therefore in the future it could be useful to conduct new experiments to evaluate the impact on learning and motor performance of these techniques.


Sign in / Sign up

Export Citation Format

Share Document