scholarly journals 1D1815 Structural analysis of the connector complex, P15, of bacteriophage T4 by analytical ultracentrifugation and electron microscopy

2000 ◽  
Vol 40 (supplement) ◽  
pp. S33
Author(s):  
Li Zhao ◽  
Chartree'chalerm Chaidirek ◽  
Yoko Takeda ◽  
Shuji Kanamaru ◽  
Fumio Arisaka
2006 ◽  
Vol 12 (S02) ◽  
pp. 658-659
Author(s):  
BK Kaletas ◽  
E Van Duijn ◽  
AJ R Heck ◽  
RB J Geels ◽  
F De Haas ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2006 in Chicago, Illinois, USA, July 30 – August 3, 2006


2003 ◽  
Vol 185 (5) ◽  
pp. 1693-1700 ◽  
Author(s):  
Li Zhao ◽  
Shuji Kanamaru ◽  
Chatree'chalerm Chaidirek ◽  
Fumio Arisaka

ABSTRACT Two proteins, gp15 and gp3 (gp for gene product), are required to complete the assembly of the T4 tail. gp15 forms the connector which enables the tail to bind to the head, whereas gp3 is involved in terminating the elongation of the tail tube. In this work, genes 15 and 3 were cloned and overexpressed, and the purified gene products were studied by analytical ultracentrifugation, electron microscopy, and circular dichroism. Determination of oligomerization state by sedimentation equilibrium revealed that both gp15 and gp3 are hexamers of the respective polypeptide chains. Electron microscopy of the negatively stained P15 and P3 (P denotes the oligomeric state of the gene product) revealed that both proteins form hexameric rings, the diameter of which is close to that of the tail tube. The differential roles between gp15 and gp3 upon completion of the tail are discussed.


Author(s):  
W. H. Wu ◽  
R. M. Glaeser

Spirillum serpens possesses a surface layer protein which exhibits a regular hexagonal packing of the morphological subunits. A morphological model of the structure of the protein has been proposed at a resolution of about 25 Å, in which the morphological unit might be described as having the appearance of a flared-out, hollow cylinder with six ÅspokesÅ at the flared end. In order to understand the detailed association of the macromolecules, it is necessary to do a high resolution structural analysis. Large, single layered arrays of the surface layer protein have been obtained for this purpose by means of extensive heating in high CaCl2, a procedure derived from that of Buckmire and Murray. Low dose, low temperature electron microscopy has been applied to the large arrays.As a first step, the samples were negatively stained with neutralized phosphotungstic acid, and the specimens were imaged at 40,000 magnification by use of a high resolution cold stage on a JE0L 100B. Low dose images were recorded with exposures of 7-9 electrons/Å2. The micrographs obtained (Fig. 1) were examined by use of optical diffraction (Fig. 2) to tell what areas were especially well ordered.


Author(s):  
Fred Eiserling ◽  
A. H. Doermann ◽  
Linde Boehner

The control of form or shape inheritance can be approached by studying the morphogenesis of bacterial viruses. Shape variants of bacteriophage T4 with altered protein shell (capsid) size and nucleic acid (DNA) content have been found by electron microscopy, and a mutant (E920g in gene 66) controlling head size has been described. This mutant produces short-headed particles which contain 2/3 the normal DNA content and which are non-viable when only one particle infects a cell (Fig. 1).We report here the isolation of a new mutant (191c) which also appears to be in gene 66 but at a site distinct from E920g. The most striking phenotype of the mutant is the production of about 10% of the phage yield as “giant” virus particles, from 3 to 8 times longer than normal phage (Fig. 2).


2011 ◽  
Vol 115 (38) ◽  
pp. 11208-11214 ◽  
Author(s):  
Mackenzie A. Firer-Sherwood ◽  
Nozomi Ando ◽  
Catherine L. Drennan ◽  
Sean J. Elliott

1989 ◽  
Vol 109 (4) ◽  
pp. 1537-1547 ◽  
Author(s):  
J H Sinard ◽  
W F Stafford ◽  
T D Pollard

We used 90 degrees light scattering, analytical ultracentrifugation, and electron microscopy to deduce that Acanthamoeba myosin-II minifilaments, composed of eight molecules each, assemble by a novel mechanism consisting of three successive dimerization steps rather than by the addition of monomers or parallel dimers to a nucleus. Above 200 mM KCl, Acanthamoeba myosin-II is monomeric. At low ionic strength (less than 100 mM KCl), myosin-II polymerizes into bipolar minifilaments. Between 100 and 200 mM KCl, plots of light scattering vs. myosin concentration all extrapolate to the origin but have slopes which decrease with increasing KCl. This indicates that structures intermediate in size between monomers and full length minifilaments are formed, and that the critical concentrations for assembly of these structures is very low. Analytical ultracentrifugation has confirmed that intermediate structures exist at these salt concentrations, and that they are in rapid equilibrium with each other. We believe these structures represent assembly intermediates and have used equilibrium analytical ultracentrifugation and electron microscopy to identify them. Polymerization begins with the formation of antiparallel dimers, with the two tails overlapping by approximately 15 nm. Two antiparallel dimers then associated with a 15-nm stagger to form an antiparallel tetramer. Finally, two tetramers associate with a 30-nm stagger to form the completed minifilament. At very low ionic strengths, the last step in the assembly mechanism is largely reversed and antiparallel tetramers are the predominant species. Alkaline pH, which can also induce minifilament disassembly, produces the same assembly intermediates as are found for salt induced disassembly.


2004 ◽  
Vol 10 (5) ◽  
pp. 586-601 ◽  
Author(s):  
Franz Petry

Cryptosporidium parvum(Apicomplexa, formerly Sporozoa) is the causative agent of cryptosporidiosis, an enteric disease of substantial medical and veterinary importance.C. parvumshows a number of unique features that differ from the rest of the class of coccidea in which it is currently grouped taxonomically. Differences occur in the overall structure of the transmission form and the invasive stages of the parasite, its intracellular location, the presence of recently described additional extracellular stages, the host range and target cell tropism, the ability to autoinfection, the nonresponsiveness to anticoccidial drugs, the immune response of the host, and immunochemical and genetic characteristics. These differences have an important impact on the infectivity, the epidemiology, the therapy, and the taxonomy of the parasite. The present article describes the structural analysis of the parasite using light and electron microscopy with an emphasis on structural details unique toC. parvum.


Sign in / Sign up

Export Citation Format

Share Document