scholarly journals Independent particle and lot selection of increment samples in the theory of sampling

Author(s):  
Kozin Vladimir ◽  
◽  
Komlev Aleksei ◽  

Introduction. The theory of sampling developed by Pierre Gy does not prove the compatibility and consistency of discrete and continuous selection models. Discrete (independent particle) and continuous (lot) selection models are determined by incompatible properties of increment samples, which prevented from creating the consistent theory of sampling. Research methodology. The inconsistencies are removed at assuming the idea that there are differences in both separate ore lumps or mineral-dressing products and any locally selected parts of the rock mass under test called increment samples simultaneously available in any rock mass under test. The said differences are described by independent particle dispersion and increment samples dispersion. Composite sample permissible error formed in both discrete and continuous selection is attained by selection of the number of particles collected into the increment sample or their parts and the number of increment samples. Particle dispersion, increment sample dispersion, the number of particles in an increment sample and the number of increment samples combined in one formula make up the complete formula of the fundamental sampling error. The development of the theory of sampling. Based on the complete formula, the possibility of obtaining minimum masses of various sizes has been shown. Thus, for one and the same preset permissible error and from one and the same massif under test, it is possible to collect minimum mass of 17.55 kg (individual particle selection), minimum mass of 170.3 kg (collecting with the bucket sampler), and minimum mass of 10 g under the individual particle selection of particle parts (which is fulfilled under X-ray fluorescent on-stream analysis of material). Discrete selection of increment samples without particles destruction is an especial case of continuous selection method when it is possible to accept the condition that increment samples dispersion is equal to zero. It is possible under ideal mixing of the massif under test. Discussion. Minimum mass of a sample is not a constant. It is a function of increment sample mass. Minimum mass in individual particle selection can be accepted as a reference value of the minimum mass. In lot selection it can be significantly higher than the reference one, while in case of reducing particle size it can be significantly lower than the reference one.

2019 ◽  
Vol 9 (10) ◽  
pp. 2065 ◽  
Author(s):  
Jonguk Kim ◽  
Hafeezur Rehman ◽  
Wahid Ali ◽  
Abdul Muntaqim Naji ◽  
Hankyu Yoo

In extensively used empirical rock-mass classification systems, the rock-mass rating (RMR) and tunneling quality index (Q) system, rock-mass quality, and tunnel span are used for the selection of rock bolt length and spacing and shotcrete thickness. In both systems, the rock bolt spacing and shotcrete thickness selection are based on the same principle, which is used for the back-calculation of the rock-mass quality. For back-calculation, there is no criterion for the selection of rock-bolt-spacing-based rock-mass quality weightage and shotcrete thickness along with tunnel-span-based rock-mass quality weightage. To determine this weightage effect during the back-calculation, five weightage cases are selected, explained through example, and applied using published data. In the RMR system, the weightage effect is expressed in terms of the difference between the calculated and back-calculated rock-mass quality in the two versions of RMR. In the Q system, the weightage effect is presented in plots of stress reduction factor versus relative block size. The results show that the weightage effect during back-calculation not only depends on the difference in rock-bolt-spacing-based rock-mass quality and shotcrete along with tunnel-span-based rock-mass quality, but also on their corresponding values.


2008 ◽  
Vol 41 (2) ◽  
pp. 9707-9712 ◽  
Author(s):  
Pierre Masci ◽  
Olivier Bernard ◽  
Frédéric Grognard

2018 ◽  
Vol 18 (06) ◽  
pp. 1850047 ◽  
Author(s):  
Mariusz Michta ◽  
Kamil Łukasz Świa̧tek

In the paper we study properties of solutions to stochastic differential inclusions and set-valued stochastic differential equations driven by a two-parameter Wiener process. We establish new connections between their solutions. We prove that attainable sets of solutions to such inclusions are subsets of values of multivalued solutions of associated set-valued stochastic equations. Next we show that every solution to stochastic inclusion is a continuous selection of a multivalued solution of an associated set-valued stochastic equation. Additionally we establish other properties of such solutions. The results obtained in the paper extends results dealing with this topic known both in deterministic and stochastic cases.


2012 ◽  
Vol 27 (31) ◽  
pp. 1250181 ◽  
Author(s):  
E. CASTELLANOS ◽  
C. LÄMMERZAHL

We analyze the effects caused by an anomalous single-particle dispersion relation suggested in several quantum-gravity models, upon the thermodynamics of a Bose–Einstein condensate trapped in a generic three-dimensional power-law potential. We prove that the shift in the condensation temperature, caused by a deformed dispersion relation, described as a non-trivial function of the number of particles and the shape associated to the corresponding trap, could provide bounds for the parameters associated to such deformation. In addition, we calculate the fluctuations in the number of particles as a criterium of thermodynamic stability for these systems. We show that the apparent instability caused by the anomalous fluctuations in the thermodynamic limit can be suppressed considering the lowest energy associated to the system in question.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Sajjad Hussain ◽  
Zahid Ur Rehman ◽  
Noor Mohammad ◽  
Muhammad Tahir ◽  
Khan Shahzada ◽  
...  

The empirical and numerical design approaches are considered very important in the viable and efficient design of support systems, stability analysis for tunnel, and underground excavations. In the present research work, the rock mass rating (RMR) and tunneling quality index (Q-system) were used as empirical methods for characterization of rock mass based on real-time geological and site geotechnical data and physical and strength properties of rock samples collected from the alignment of tunnel. The rock mass along the tunnel axis was classified into three geotechnical units (GU-1, GU-2, and GU-3). The support systems for each geotechnical unit were designed. The 2D elastoplastic finite-element method (FEM) was used for the analysis of rock mass behavior, in situ and redistribution stresses, plastic thickness around the tunnel, and performance of the design supports for the selection of optimum support system among RMR and Q supports for each geotechnical unit of tunnel. Based on results, Q support systems were found more effective for GU-1 and GU-2 as compared to RMR support systems and RMR support systems for GU-3 as compared to Q support systems.


2020 ◽  
Author(s):  
Michael Heap ◽  
Marlène Villeneuve ◽  
Fabien Albino ◽  
Jamie Farquharson ◽  
Elodie Brothelande ◽  
...  

<p>The accuracy of elastic analytical solutions and numerical models, widely used in volcanology to interpret surface ground deformation, depends heavily on the Young’s modulus chosen to represent the medium. The paucity of laboratory studies that provide Young’s moduli for volcanic rocks, and studies that tackle the topic of upscaling these values to the relevant lengthscale, has left volcano modellers ill-equipped to select appropriate Young’s moduli for their models. Here we present a wealth of laboratory data and suggest tools, widely used in geotechnics but adapted here to better suit volcanic rocks, to upscale these values to the scale of a volcanic rock mass. We provide the means to estimate upscaled values of Young’s modulus, Poisson’s ratio, shear modulus, and bulk modulus for a volcanic rock mass that can be improved with laboratory measurements and/or structural assessments of the studied area, but do not rely on them. In the absence of information, we estimate upscaled values of Young’s modulus, Poisson’s ratio, shear modulus, and bulk modulus for volcanic rock with an average porosity and an average fracture density/quality to be 5.4 GPa, 0.3, 2.1 GPa, and 4.5 GPa, respectively. The proposed Young’s modulus for a typical volcanic rock mass of 5.4 GPa is much lower than the values typically used in volcano modelling. We also offer two methods to estimate depth-dependent rock mass Young’s moduli, and provide two examples, using published data from boreholes within Kīlauea volcano (USA) and Mt. Unzen (Japan), to demonstrate how to apply our approach to real datasets. It is our hope that our data and analysis will assist in the selection of elastic moduli for volcano modelling. To this end, our new publication (Heap et al., 2019), which outlines our approach in detail, also provides a Microsoft Excel© spreadsheet containing the data and necessary equations to calculate rock mass elastic moduli that can be updated when new data become available. The selection of the most appropriate elastic moduli will provide the most accurate model predictions and therefore the most reliable information regarding the unrest of a particular volcano or volcanic terrain.</p><p>Heap, M.J., Villeneuve, M., Albino, F., Farquharson, J.I., Brothelande, E., Amelung, F., Got, J.L. and Baud, P., 2019. Towards more realistic values of elastic moduli for volcano modelling. Journal of Volcanology and Geothermal Research, https://doi.org/10.1016/j.jvolgeores.2019.106684.</p>


2021 ◽  
Author(s):  
Inmaculada Martín-Quintero ◽  
Alberto Cervera-Sabater ◽  
Víctor Tapias-Perero ◽  
Iván Nieto-Sánchez ◽  
Javier de la Cruz-Pérez

Abstract Background: This study evaluates the particle dispersion involved in dental procedures carried out during orthodontic treatments. Variants such as temperature and relative humidity in the dental cabinet were considered. Methods: Using a particle counter, a pilot study was conducted, in which 98 consecutive recordings were made during appointments of patients undergoing orthodontic treatments. Temperature, relative humidity and particles present at the beginning (AR) and during the appointment (BR) were recorded. A control record (CR) of temperature, relative humidity and particles present was made before the start of the clinical activity. In addition to conventional statistics, differential descriptive procedures were used to analyse results, and the influence of relative humidity on particle concentration was analysed by statistical modelling with regression equations. Results: The number of particles present, regardless of their size, was much higher in AR than in CR (p<.001). The same was true for relative humidity and ambient temperature. The relationship between relative humidity and particle number was determined to be exponential. Limitations of the study: The limitations are associated with sample size, environmental conditions of the room and lack of discrimination among the procedures performed. Conclusions: This pilot study shows that from the moment a patient enters a dental office, a large number of additional particles are generated. During treatment, the number of particles of 0.3 microns – which have a high capacity to penetrate the respiratory tract – increases. Moreover, a relationship between relative humidity and particle formation is observed. Further studies are needed.


2020 ◽  
Vol 13 (11) ◽  
pp. 5277-5310
Author(s):  
Anne Tipka ◽  
Leopold Haimberger ◽  
Petra Seibert

Abstract. Flex_extract is an open-source software package to efficiently retrieve and prepare meteorological data from the European Centre for Medium-Range Weather Forecasts (ECMWF) as input for the widely used Lagrangian particle dispersion model FLEXPART and the related trajectory model FLEXTRA. ECMWF provides a variety of data sets which differ in a number of parameters (available fields, spatial and temporal resolution, forecast start times, level types etc.). Therefore, the selection of the right data for a specific application and the settings needed to obtain them are not trivial. Consequently, the data sets which can be retrieved through flex_extract by both member-state users and public users as well as their properties are explained. Flex_extract 7.1.2 is a substantially revised version with completely restructured code, mainly written in Python 3, which is introduced with all its input and output files and an explanation of the four application modes. Software dependencies and the methods for calculating the native vertical velocity η˙, the handling of flux data and the preparation of the final FLEXPART input files are documented. Considerations for applications give guidance with respect to the selection of data sets, caveats related to the land–sea mask and orography, etc. Formal software quality-assurance methods have been applied to flex_extract. A set of unit and regression tests as well as code metric data are also supplied. A short description of the installation and usage of flex_extract is provided in the Appendix. The paper points also to an online documentation which will be kept up to date with respect to future versions.


Sign in / Sign up

Export Citation Format

Share Document