scholarly journals Geology, petrography and mineralogy of explosive breccias of Sallanlatva, Kola Region

Vestnik MGTU ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 57-68
Author(s):  
M. Yu. Sidorov ◽  
E. N. Kozlov ◽  
E. N. Fomina

The Sallanlatva massif belongs to the group of Paleozoic alkaline-ultrabasic complexes wide spread in the Kola Region (the northwestern part of the Fennoscandian Shield). In the central part of this massif, the host ijolite and urtites contain calcite, ankerite, ankerite-dolomite and siderite carbonatites. The explosive processes that led to the formation of carbonatite breccias in the calcite and ankerite-dolomite carbonatites occurred in Sallanlatva massife in the last stages of the carbonatite magmatism. There are two types of explosive carbonatite breccias in the Sallanlatva massif: (1) glimmerite-calciocarbonatite breccias, and (2) siderite-dolomite breccias. Analysis of the mineral composition of fragments and matrix and the shape of fragments in breccias has shown that the first material to intrude into the host calcite and ankerite-dolomite carbonatites was calcite melt. After that, dolomite melt penetrated through the fracture zones, which resulted in the formation of siderite-dolomite breccias. The differences in the mineral composition of the breccia matrix suggest that the residual carbonatite melts originate from separate magma chambers. The chamber with calcite melt was located at great depth, and some captured glimmerite fragments were abraded during the melt upwelling. Silicate-dolomite melts lifted from a shallower depth; the captured fragments of siderite carbonatites retained their angular shape. Late hydrothermal processes yielded veins and caverns with Ba-Sr-P-S-Ti-REE mineralization in the breccias and host rocks.

Minerals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 25 ◽  
Author(s):  
Yu-heng Jia ◽  
Yan Liu

The Weishan carbonatite-related rare earth element (REE) deposit in China contains both high- and low-grade REE mineralization and is an informative case study for the investigation of magmatic–hydrothermal REE enrichment processes in such deposits. The main REE-bearing mineral is bastnäsite, with lesser parisite and monazite. REE mineralization occurred at a late stage of hydrothermal evolution and was followed by a sulfide stage. Barite, calcite, and strontianite appear homogeneous in back-scattered electron images and have high REE contents of 103–217, 146–13,120, and 194–16,412 ppm in their mineral lattices, respectively. Two enrichment processes were necessary for the formation of the Weishan deposit: Production of mineralized carbonatite and subsequent enrichment by magmatic–hydrothermal processes. The geological setting and petrographic characteristics of the Weishan deposit indicate that two main factors facilitated REE enrichment: (1) fractures that facilitated circulation of ore-forming fluids and provided space for REE precipitation and (2) high ore fluorite and barite contents resulting in high F− and SO42− concentrations in the ore-forming fluids that promoted REE transport and deposition.


Minerals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 442 ◽  
Author(s):  
Frances Chikanda ◽  
Tsubasa Otake ◽  
Yoko Ohtomo ◽  
Akane Ito ◽  
Takaomi D. Yokoyama ◽  
...  

Carbonatites undergo various magmatic-hydrothermal processes during their evolution that are important for the enrichment of rare earth elements (REE). This geochemical, petrographic, and multi-isotope study on the Kangankunde carbonatite, the largest light REE resource in the Chilwa Alkaline Province in Malawi, clarifies the critical stages of REE mineralization in this deposit. The δ56Fe values of most of the carbonatite lies within the magmatic field despite variations in the proportions of monazite, ankerite, and ferroan dolomite. Exsolution of a hydrothermal fluid from the carbonatite melts is evident based on the higher δ56Fe of the fenites, as well as the textural and compositional zoning in monazite. Field and petrographic observations, combined with geochemical data (REE patterns, and Fe, C, and O isotopes), suggest that the key stage of REE mineralization in the Kangankunde carbonatite was the late magmatic stage with an influence of carbothermal fluids i.e. magmatic–hydrothermal stage, when large (~200 µm), well-developed monazite crystals grew. The C and O isotope compositions of the carbonatite suggest a post-magmatic alteration by hydrothermal fluids, probably after the main REE mineralization stage, as the alteration occurs throughout the carbonatite but particularly in the dark carbonatites.


2020 ◽  
Vol 21 (1) ◽  
pp. geochem2020-048
Author(s):  
Irene M. Kadel-Harder ◽  
Paul G. Spry ◽  
Audrey L. McCombs ◽  
Haozhe Zhang

The Cripple Creek alkaline igneous rock-related, low-sulfidation epithermal gold telluride deposit, Colorado, is hosted in the 10 km wide Oligocene alkaline volcanic Cripple Creek diatreme in Proterozoic rocks. Gold occurs as native gold, Au-tellurides, and in the structure of arsenian pyrite, in potassically altered high-grade veins, and as disseminations in the host rocks.Correlation coefficients, principal component analysis, hierarchical cluster analysis and random forests were used to analyse major and trace element compositions of 995 rock samples primarily from low-grade gold mineralization in drill core from three currently operating pits (Wild Horse Extension, Globe Hill and Schist Island) in the northwestern part of the Cripple Creek diatreme. These methods suggest that Ag, As, Bi, Te and W are the best pathfinders to gold mineralization in low-grade disseminated ore. Although Mo correlates with gold in other studies and is spatially related to gold veins, molybdenite post-dated the formation of gold and is likely related to a late-stage porphyry overprint. These elements, in conjunction with mineralogical studies, indicate that tellurides, fluorite, quartz, carbonates, roscoelite, tennantite-tetrahedrite, pyrite, sphalerite, muscovite, monazite, bastnäsite and hübnerite serve as exploration guides to ore.


Author(s):  
R. S. J. Sparks ◽  
C. Annen ◽  
J. D. Blundy ◽  
K. V. Cashman ◽  
A. C. Rust ◽  
...  

The emerging concept of a magma reservoir is one in which regions containing melt extend from the source of magma generation to the surface. The reservoir may contain regions of very low fraction intergranular melt, partially molten rock (mush) and melt lenses (or magma chambers) containing high melt fraction eruptible magma, as well as pockets of exsolved magmatic fluids. The various parts of the system may be separated by a sub-solidus rock or be connected and continuous. Magma reservoirs and their wall rocks span a vast array of rheological properties, covering as much as 25 orders of magnitude from high viscosity, sub-solidus crustal rocks to magmatic fluids. Time scales of processes within magma reservoirs range from very slow melt and fluid segregation within mush and magma chambers and deformation of surrounding host rocks to very rapid development of magma and fluid instability, transport and eruption. Developing a comprehensive model of these systems is a grand challenge that will require close collaboration between modellers, geophysicists, geochemists, geologists, volcanologists and petrologists. This article is part of the Theo Murphy meeting issue ‘Magma reservoir architecture and dynamics’.


2020 ◽  
Vol 67 ◽  
pp. 107-146
Author(s):  
Paul Martin Holm ◽  
Niels-Ole Prægel

The Kærven Syenite Complex (KSC) is one of the oldest felsic intrusions in the Tertiary East Greenland province. Here we update our previous description of the KSC and supply a greatly expanded and comprehensive geochemical dataset. New data allow us to present a more detailed petrogenetic model for the evolution of the KSC and to investigate the geochemical characteristics of igneous cumulates subjected to loss and, occasionally, replacement of residual liquid. The KSC comprises eleven mappable units that generally young westwards. Rock types range from quartz syenite to quartz alkali feldspar syenite and alkali feldspar granite. Individual intrusive units are relatively narrow and steep-sided and are collectively suggested to represent a ring dyke complex. Basement gneiss and gabbro host rocks have locally contaminated the oldest quartz syenite KSC unit, but most of the main part of the complex escaped significant influence from host rocks. A late suite of E–W to NE–SW striking peralkaline dykes of trachytic to phonolitic compositions intrude the KSC. Compositions of the KSC rocks span a considerable range in SiO2, 59–73 wt%. Concentrations of several elements vary widely for a given SiO2 (especially at SiO2 < 66 wt%), and variation diagrams do not suggest a single model for the evolution of the units of the complex. A cumulative origin is envisaged for several KSC units. Geochemical modelling suggests that KSC magmas were derived from more than one primary magma, and that the complex evolved through a four-stage process: fractional crystallisation in precursory magma chambers was followed by final emplacement of each unit, establishment of a crystal/melt mush, expulsion of part of the residual melt and, finally, crystallisation of the remaining melt. Trace element disequilibria between alkali feldspar and host rocks in two closely associated quartz alkali feldspar syenite units indicate that highly evolved residual melt was replaced by a less evolved melt phase. Modelling of potential parent melt compositions to the Kærven magmas suggests an origin not in the Iceland plume asthenosphere, but rather in a moderately enriched source, possibly in the continental lithosphere. The course of melt evolution by fractional crystallisation is indicated to have taken place in magma chambers at depth, and repeated rise of magma into the upper crustal magma chambers and crystallisation there formed the KSC. Based on our survey of published geochemical data, the inferred parental magmas seem to have few equivalents in the North Atlantic Igneous Province and may have been generated mainly from melting of enriched dry lithospheric mantle of possibly Archaean age.


2020 ◽  
Vol 50 ◽  
pp. 45-62
Author(s):  
Sanjsuren Oyunbat

The Ulaan Del deposit is located in the Lake Zone, Western Mongolia. In the area, middle-late Devonian alkali dykes of the Khalzan Complex are hosted in the middle-late Cambrian granodiorite-tonalite of the Togthohiinshil Complex. The alkali dykes of the Khalzan complex comprise medium- to fine-grained syenite, microsyenite, syenite-porphyry and trachyte, trachyrhyolite, and trachyandesite. The dykes are replaced to silica, sericite, albite, fluorite and are brecciated. They crosscut by quartz and quartz-carbonate veinlets. The dykes contain zircon (>0.19% Zr) with a total of rare earth elements oxides >0.1%. The host rocks of the Togtokhiinshil complex are mid-K, metaluminous, I- type granite, depleted in HFSE. Based on geochemical and mineralogical data, economic REE mineralization is concentrated in syenite and syenite porphyry of calc-alkaline high K to shoshonite series of A- type granite, emplaced at within a plate setting. Syenite dykes are enriched in REE. Ore minerals are zircon, apatite, sphene, monazite, xenotime, synchysite, parisite, fluorite and REE complex minerals, pyrite, rutile and limonite. Magmatic, metasomatic and hydrothermal processes significantly contributed to the formation of Zr, Nb, REE and Y mineralization at the Ulaan Del deposit.


Author(s):  
Franz Weis ◽  
Valentin R. Troll ◽  
Erik Jonsson ◽  
Karin Högdahl ◽  
Chris Harris ◽  
...  

AbstractThe origin of Kiruna-type iron oxide–apatite ores is controversial, and debate presently centres on a ‘magmatic’ versus a ‘hydrothermal’ mode of formation. To complement recent investigations on the Grängesberg iron oxide–apatite ore deposit in the northwestern part of the Palaeoproterozoic Bergslagen ore province in central Sweden, we investigated the oxygen isotope composition of the host rocks of this large iron oxide–apatite ore body. As the metavolcanic and metagranitoid country rocks around the Grängesberg ore body either pre-date or are coeval with ore formation, they would be expected to record an extensive isotopic imprint if the ore body had formed by large-scale hydrothermal processes involving an externally sourced fluid. A direct magmatic formation process, in turn, would have produced localized alteration only, concentrated on the immediate vicinity of the ore body. Here, we test these two hypotheses by assessing the oxygen isotope variations in the host rocks around the main Grängesberg iron oxide–apatite ore body. We analysed oxygen isotopes in quartz from metavolcanic (n = 17) and metagranitoid host rocks (n = 14) from the vicinity of the ore body, and up to 2 km distance along and across the strike of the ore body. Remarkably, we find no significant variation in δ18O values with distance from the ore body, or any deviations in country rock δ18O from common magmatic and/or regional values. Only two samples show shifts to values more negative than the common magmatic range, indicating highly localized hydrothermal overprint only. As a large-scale, low-temperature hydrothermal origin of the ore body through voluminous fluid percolation would be expected to have left a distinct imprint on the oxygen isotope values of the country rocks, our results are more consistent with an ortho-magmatic origin for the Grängesberg iron oxide–apatite ore.


Sign in / Sign up

Export Citation Format

Share Document