scholarly journals Analysis of Solar PV Energy Systems for Rural Villages of Nekemte Area, Oromiya Region, Ethiopia

2019 ◽  
Vol 6 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Tegenu Argaw Woldegiyorgis

Currently, the main energy source used in rural areas of Ethiopia for cooking and heating is unprocessed biomass and fossil fuel such as kerosene, paraffin and petrol/diesel. These energy sources generate large volume of indoor air pollution that increases the risk of chronic diseases. Solar energy is the most practical and economical way of bringing power to poor and remote communities in the long-term and Ethiopia is strategically located in a maximum sun shines hours zone. This study assessed the potential of a solar PV power system to provide the required electricity for a rural community near Nekemte city in Oromiya regions of Ethiopia. The sunshine hour’s data was obtained from the National Meteorological Service Agency (NMA). Results showed an abundant (average) solar energy potential of 5.52 KWh/m2/day. Electric load for a single household, school and clinic was estimated at 313, 2064 and 2040 Wh/day respectively. The cost of energy from solar PV system was estimated at about $1.2/kWh, $0.92/kWh and $0.87/KWh for household, school and clinic respectively. The findings encourage the use of the PV systems to electrify the remote sites of Ethiopia considering it long-term benefits and less cost of installation compared to national grid extension to the remote sites.

2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
O. Nait Mensour ◽  
S. Bouaddi ◽  
B. Abnay ◽  
B. Hlimi ◽  
A. Ihlal

Solar radiation data play an important role in solar energy research. However, in regions where the meteorological stations providing these data are unavailable, strong mapping and estimation models are needed. For this reason, we have developed a model based on artificial neural network (ANN) with a multilayer perceptron (MLP) technique to estimate the monthly average global solar irradiation of the Souss-Massa area (located in the southwest of Morocco). In this study, we have used a large database provided by NASA geosatellite database during the period from 1996 to 2005. After testing several models, we concluded that the best model has 25 nodes in the hidden layer and results in a minimum root mean square error (RMSE) equal to 0.234. Furthermore, almost a perfect correlation coefficient R=0.988 was found between measured and estimated values. This developed model was used to map the monthly solar energy potential of the Souss-Massa area during a year as estimated by the ANN and designed with the Kriging interpolation technique. By comparing the annual average solar irradiation between three selected sites in Souss-Massa, as estimated by our model, and six European locations where large solar PV plants are deployed, it is apparent that the Souss-Massa area is blessed with higher solar potential.


A reliable grid connected Photovoltaic (PV) system require effective control schemes for efficient use of solar energy. This paper presents a three-phase grid tied PV system with decoupled real and reactive power control to achieve desired power factor with Maximum Power Point Tracking (MPPT) controller to get maximum solar energy. The synchronous reference frame (dq) control along with decoupling concept is used to control the DC-AC inverter output, while the Phase Locked Loop (PLL) synchronization technique is used to monitor and synchronize the voltage and current at the grid side. The DC-DC converter with Incremental Conductance (InC) based MPPT model is also designed in this paper due to better accuracy compared to Perturb & Observe (P&O) algorithm. The simulation is performed in MATLAB/SIMULINK and a 31.5 kW PV system is modelled to get 30 kW power with the help of MPPT at Standard Test Conditions (STC). Any power factor value between 0.85 lagging to 0.9 leading can be obtained by changingreference q current in this inverter control strategy. The simulation results show that the change of reactive powerdoes not affecttheactive power values of the system, which verifies the effectiveness of the decoupled control strategy of the inverter.


2018 ◽  
Vol 7 (3) ◽  
pp. 450-457
Author(s):  
T. M. N. T. Mansur ◽  
N. H. Baharudin ◽  
R. Ali

Malaysia has moved forward by promoting the use of renewable energy such as solar PV to the public to reduce dependency on fossil fuel-based energy resources. Due to the concern on high electricity bill, Universiti Malaysia Perlis (UniMAP) is keen to install solar PV system as an initiative for energy saving program to its buildings. The objective of this paper is to technically and economically evaluate the different sizing of solar PV system for university buildings under the Net Energy Metering (NEM) scheme. The study involves gathering of solar energy resource information, daily load profile of the buildings, sizing PV array together with grid-connected inverters and the simulation of the designed system using PVsyst software. Based on the results obtained, the amount of solar energy generated and used by the load per year is between 5.10% and 20.20% from the total annual load demand. Almost all solar energy generated from the system will be self-consumed by the loads. In terms of profit gained, the university could reduce its electricity bill approximately between a quarter to one million ringgit per annum depending on the sizing capacity. Beneficially, the university could contribute to the environmental conservation by avoiding up to 2,000 tons of CO2 emission per year.


Author(s):  
Yuwono Bimo Purnomo ◽  
F. Danang Wijaya ◽  
Eka Firmansyah

In a standalone photovoltaic (PV) system, a bidirectional DC converter (BDC) is needed to prevent the battery from damage caused by DC bus voltage variation. In this paper, BDC was applied in a standalone solar PV system to interface the battery with a DC bus in a standalone PV system. Therefore, its bidirectional power capability was focused on improving save battery operation while maintaining high power quality delivery. A non-isolated, buck and boost topology for the BDC configuration was used to interface the battery with the DC bus. PID controller-based control strategy was chosen for easy implementation, high reliability, and high dynamic performance. A simulation was conducted using MATLAB Simulink program. The simulation results show that the implementation of the BDC controller can maintain the DC bus voltage to 100 V, have high efficiency at 99.18% in boost mode and 99.48% in buck mode. To prevent the battery from overcharging condition, the BDC stops the charging process and then works as a voltage regulator to maintain the DC bus voltage at reference value.


Author(s):  
Oladokun Sulaiman Olanrewaju

Like all modes of transportation that use fossil fuels, ships produce carbon dioxide emissions that significantly contribute to global climate change and ocean acidification. Additionally, ships release other pollutants that also contribute to the problem and exacerbate climate change. Considering the large volume of ships on the high seas, ship emissions pose a significant threat to human health. The ocean is exposed to vast amounts of sunrays and has a great potential to be explored by the maritime sector and green power industry. Solar energy hybrid assisted power to support auxiliary power for the instruments on board the vessel is explored in a UMT vessel. The vessel that is used in this case study is Discovery XI, which is a 16.50 meter diving boat owned by University Malaysia Terengganu. The study explores the feasibility of using solar energy as a supporting power for marine vessel auxiliaries. The reduction of fuel usage after installing the solar PV system on the boat is determined, as well as an economic analysis. The power requirement for the vessel’s electrical system is estimated. The fuel and money saved is also estimated for comparison purposes of the vessel using the solar PV system and the vessel without the PV system. Economic analyses are performed, the Annual Average Cost (AAC) between a vessel using solar PV system and a vessel without solar PV system is estimated, and the period of the return of investment for the vessel with solar PV system is also estimated. The use of a photovoltaic solar system to assist the boat power requirement will benefit the environment through Green House Gas (GHG) reduction, and the use of solar as a supporting alternative energy could cut the cost of boat operation through fuel savings.


2020 ◽  
Vol 5 ◽  
pp. 1
Author(s):  
Joseph Kenfack ◽  
Joseph Voufo ◽  
Paul Salomon Ngohe Ekam ◽  
Jeanine K. Lewetchou ◽  
Urbain Nzotcha

Sub Saharan Africa has a great renewable energy potential. Rural areas are suffering from poor energy access. Some systems designed to address this issue are still faced with some difficulties. Appropriate approaches and energy plant development will help remote areas to address the issue of electricity access. The current development of some micro hydro and micro solar energy plants is of poor quality and maintenance, sometimes resulting in failures. There are also some common mistakes made when promoting (designing) an energy system in an African environment. Identifying issues from local constraints and lessons learned will contribute to determining the appropriate sizing, technology and tools to correctly develop micro hydro and micro solar energy plants.


2015 ◽  
Vol 13 ◽  
pp. 341-347 ◽  
Author(s):  
Gabriela Demian ◽  
Mihai Demian ◽  
Lizia Bogdan

The paper makes an assessment of the long term solar resource for the location of a photovoltaic solar park in the Pristol, Mehedinti County, Romania. Reference data and observations in the proximity of the solar park location were limited, and the analysis was based on a Typical Meteorological Year (TMY) Meteonorm developed to represent the behavior of the solar resource at the site of Photovoltaic Solar Park. The level of Global Horizontal Irradiance (GHI) was evaluated as 1376 kWh/m2/year, while values for direct normal irradiance (DNI) and diffuse horizontal irradiance (DHI), the resulting values were 1553 kWh/m2/year and 606 kWh/m2/year, respectively, provided for long-term behavior.


2014 ◽  
Vol 3 (2) ◽  
pp. 467-473
Author(s):  
Henrik Zsiborács ◽  
Gábor Pintér ◽  
Béla Pályi

The energy is one of the most important needs of the humanity. One of its biggest challenge or danger is that the world's demand for energy continues to grow. The aim of present study is to review the introduction of solar energy utilization, the economic determination of the return of crystalline solar photovoltaic systems in Hungary, the electricity price reductions for individuals and the change in the payback period. The effect of the changing investment cost to the payback period based on the changes in electricity price reductions and in central bank interest rate is written in this study. An important question is for a household: decide by or against a solar (PV) system. The main direction of our recent research is the utilization of photovoltaic (PV) solar energy with crystalline solar systems. The research was carried out in solar-electric power plants extended from 1.5 kWp to 10 kWp. The calculation of payback time was performed by dynamic indices.


Author(s):  
Ramzi Alahmadi ◽  
◽  
Kamel Almutairi ◽  

With the increasing global concerns about greenhouse gas emissions caused by the extensive use of fossil fuels, many countries are investing in the deployment of clean energy sources. The utilization of abundant solar energy is one of the fastest growing deployed renewable sources due its technological maturity and economic competitivity. In addition to report from the National Renewable Energy Laboratory (NREL), many studies have suggested that the maturity of solar energy systems will continue to develop, which will increase their economic viability. The focus of analysis in this paper is countries with hot desert climates since they are the best candidates for solar energy systems. The capital of Saudi Arabia, Riyadh is used as the case study due to the country’s ambitious goals in this field. The main purpose of this study is to comprehensively analyze the stochastic behavior and probabilistic distribution of solar irradiance in order to accurately estimate the expected power output of solar systems. A solar Photovoltaic (PV) module is used for the analysis due to its practicality and widespread use in utility-scale projects. In addition to the use of a break-even analysis to estimate the economic viability of solar PV systems in hot desert climates, this paper estimates the indifference point at which the economic feasibility of solar PV systems is justified, compared with the fossil-based systems. The numerical results show that the break-even point of installing one KW generation capacity of a solar PV system is estimated to pay off after producing 16,827 KWh, compared to 15,422 KWh for the case of fossil-based systems. However, the increased cost of initial investment in solar PV systems deployment starts to be economically justified after producing 41,437 KWh.


Sign in / Sign up

Export Citation Format

Share Document