scholarly journals Strongly Interacting Light Dark Matter

2017 ◽  
Vol 3 (3) ◽  
Author(s):  
Sebastian Bruggisser ◽  
Francesco Riva ◽  
Alfredo Urbano

We discuss a class of Dark Matter (DM) models that, although inherently strongly coupled, appear weakly coupled at small-energy and fulfill the WIMP miracle, generating a sizable relic abundance through the standard freeze-out mechanism. Such models are based on approximate global symmetries that forbid relevant interactions; fundamental principles, like unitarity, restrict these symmetries to a small class, in such a way that the leading interactions between DM and the Standard Model are captured by effective operators up to dimension-8. The underlying strong coupling implies that these interactions become much larger at high-energy and represent an interesting novel target for LHC missing-energy searches.

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Roberto Contino ◽  
Alessandro Podo ◽  
Filippo Revello

Abstract A class of chiral gauge theories is studied with accidentally-stable pseudo Nambu-Goldstone bosons playing the role of dark matter (DM). The gauge group contains a vector-like dark color factor that confines at energies larger than the electroweak scale, and a U(1)D factor that remains weakly coupled and is spontaneously broken. All new scales are generated dynamically, including the DM mass, and the IR dynamics is fully calculable. We analyze minimal models of this kind with dark fermions transforming as non-trivial vector-like representations of the Standard Model (SM) gauge group. In realistic models, the DM candidate is a SM singlet and comes along with charged partners that can be discovered at high-energy colliders. The phenomenology of the lowest-lying new states is thus characterized by correlated predictions for astrophysical observations and laboratory experiments.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Lucien Heurtier ◽  
Fei Huang ◽  
Tim M.P. Tait

Abstract In the framework where the strong coupling is dynamical, the QCD sector may confine at a much higher temperature than it would in the Standard Model, and the temperature-dependent mass of the QCD axion evolves in a non-trivial way. We find that, depending on the evolution of ΛQCD, the axion field may undergo multiple distinct phases of damping and oscillation leading generically to a suppression of its relic abundance. Such a suppression could therefore open up a wide range of parameter space, resurrecting in particular axion dark-matter models with a large Peccei-Quinn scale fa ≫ 1012 GeV, i.e., with a lighter mass than the standard QCD axion.


2020 ◽  
Vol 8 (2) ◽  
Author(s):  
Maximilian Ruhdorfer ◽  
Ennio Salvioni ◽  
Andreas Weiler

We study for the first time the collider reach on the derivative Higgs portal, the leading effective interaction that couples a pseudo Nambu-Goldstone boson (pNGB) scalar Dark Matter to the Standard Model. We focus on Dark Matter pair production through an off-shell Higgs boson, which is analyzed in the vector boson fusion channel. A variety of future high-energy lepton colliders as well as hadron colliders are considered, including CLIC, a muon collider, the High-Luminosity and High-Energy versions of the LHC, and FCC-hh. Implications on the parameter space of pNGB Dark Matter are discussed. In addition, we give improved and extended results for the collider reach on the marginal Higgs portal, under the assumption that the new scalars escape the detector, as motivated by a variety of beyond the Standard Model scenarios.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Cao H. Nam

AbstractWe propose a general flavor-independent extension of the Standard Model (SM) with the minimal particle content, based on the symmetry $$SU(3)_C\times SU(2)_L\times U(1)_{Y'}\times U(1)_X\times Z_2$$ S U ( 3 ) C × S U ( 2 ) L × U ( 1 ) Y ′ × U ( 1 ) X × Z 2 . In this scenario, the charge operator is identified in terms of the charges of two U(1) gauge symmetries. The light neutrino masses are generated via Type-I seesaw mechanism only with two heavy right-handed neutrinos acquiring their Majorana masses through the $$U(1)_{Y'}\times U(1)_X$$ U ( 1 ) Y ′ × U ( 1 ) X symmetry breaking. We study various experimental constraints on the parameters of the model and investigate the phenomenology of the right-handed neutrino dark matter (DM) candidate assigned a $$Z_2$$ Z 2 -odd parity. We find that the most important constraints are the observed DM relic abundance, the current LHC limits, and the ambiguity of the SM neutral gauge boson mass.


1992 ◽  
Vol 07 (09) ◽  
pp. 733-747 ◽  
Author(s):  
A. BOTTINO ◽  
V. DE ALFARO ◽  
N. FORNENGO ◽  
A. MORALES ◽  
J. PUIMEDÓN ◽  
...  

Direct search for neutralino dark matter is analyzed in the framework of the minimal supersymmetric extension of the standard model, using a realistic evaluation of the neutralino relic abundance which also includes radiative corrections to the Higgs masses. Relevance of the present (Ge detectors) experimental data to set constraints on the parameters of the model is discussed and expectations for future experiments which involve neutralino-nucleus coherent processes are investigated. These results are compared to those obtained in a previous paper from indirect search data. In the present analysis particular attention is paid to the theoretical uncertainties due to the different estimates of the Higgs-nucleon coupling strength.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Yasaman Farzan

Abstract Observation of high energy cosmic neutrinos by ICECUBE has ushered in a new era in exploring both cosmos and new physics beyond the Standard Model (SM). In the standard picture, although mostly νμ and νe are produced in the source, oscillation will produce ντen route. Certain beyond SM scenarios, like interaction with ultralight DM can alter this picture. Thus, the flavor composition of the cosmic neutrino flux can open up the possibility of exploring certain beyond the SM scenarios that are inaccessible otherwise. We show that the τ flavor holds a special place among the neutrino flavors in elucidating new physics. Interpreting the two anomalous events observed by ANITA as ντ events makes the tau flavor even more intriguing. We study how the detection of the two tau events by ICECUBE constrains the interaction of the neutrinos with ultralight dark matter and discuss the implications of this interaction for even higher energy cosmic neutrinos detectable by future radio telescopes such as ARA, ARIANNA and GRAND. We also revisit the 3 + 1 neutrino scheme as a solution to the two anomalous ANITA events and clarify a misconception that exists in the literature about the evolution of high energy neutrinos in matter within the 3 + 1 scheme with a possibility of scattering off nuclei. We show that the existing bounds on the flux of ντ with energy of EeV rules out this solution for the ANITA events. We show that the 3 + 1 solution can be saved from both this bound and from the bound on the extra relativistic degrees of freedom in the early universe by turning on the interaction of neutrinos with ultralight dark matter.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Raffaele Tito D’Agnolo ◽  
Di Liu ◽  
Joshua T. Ruderman ◽  
Po-Jen Wang

Abstract We present kinematically forbidden dark matter annihilations into Standard Model leptons. This mechanism precisely selects the dark matter mass that gives the observed relic abundance. This is qualitatively different from existing models of thermal dark matter, where fixing the relic density typically leaves open orders of magnitude of viable dark matter masses. Forbidden annihilations require the dark matter to be close in mass to the particles that dominate its annihilation rate. We show examples where the dark matter mass is close to the muon mass, the tau mass, or the average of the tau and muon masses. We find that most of the relevant parameter space can be covered by the next generation of proposed beam-dump experiments and future high-luminosity electron positron colliders. Forbidden dark matter predicts large couplings to the Standard Model that can explain the observed value of (g − 2)μ.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Cédric Delaunay ◽  
Teng Ma ◽  
Yotam Soreq

Abstract We consider models of decaying spin-1 dark matter whose dominant coupling to the standard model sector is through a dark-Higgs Yukawa portal connecting a TeV-scale vector-like lepton to the standard model (right-handed) electron. Below the electron-positron threshold, dark matter has very slow, loop-suppressed decays to photons and (electron) neutrinos, and is stable on cosmological time-scale for sufficiently small gauge coupling values. Its relic abundance is set by in-equilibrium dark lepton decays, through the freeze-in mechanism. We show that this model accommodates the observed dark matter abundance for natural values of its parameters and a dark matter mass in the ∼ 5 keV to 1 MeV range, while evading constraints from direct detection, indirect detection, stellar cooling and cosmology. We also consider the possibility of a nonzero gauge kinetic mixing with the standard model hypercharge field, which is found to yield a mild impact on the model’s phenomenology.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Nathaniel Craig ◽  
Minyuan Jiang ◽  
Ying-Ying Li ◽  
Dave Sutherland

Abstract We consider aspects of tree and one-loop behavior in a generic 4d EFT of massless scalars, fermions, and vectors, with a particular eye to the high-energy limit of the Standard Model EFT at operator dimensions 6 and 8. First, we classify the possible Lorentz structures of operators and the subset of these that can arise at tree-level in a weakly coupled UV completion, extending the tree/loop classification through dimension 8 using functional methods. Second, we investigate how operators contribute to tree and one-loop helicity amplitudes, exploring the impact of non-renormalization theorems through dimension 8. We further observe that many dimension 6 contributions to helicity amplitudes, including rational parts, vanish exactly at one-loop level. This suggests the impact of helicity selection rules extends beyond one loop in non-supersymmetric EFTs.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Alexandre Carvunis ◽  
Diego Guadagnoli ◽  
Méril Reboud ◽  
Peter Stangl

Abstract We present a model of composite Dark Matter (DM), in which a new QCD-like confining “hypercolor” sector generates naturally stable hyperbaryons as DM candidates and at the same time provides mass to new weakly coupled gauge bosons H that serve as DM mediators, coupling the hyperbaryons to the Standard Model (SM) fermions. By an appropriate choice of the H gauge symmetry as a horizontal SU(2)h SM flavor symmetry, we show how the H gauge bosons can be identified with the horizontal gauge bosons recently put forward as an explanation for discrepancies in rare B-meson decays. We find that the mass scale of the H gauge bosons suggested by the DM phenomenology intriguingly agrees with the one needed to explain the rare B-decay discrepancies.


Sign in / Sign up

Export Citation Format

Share Document