scholarly journals Anticancer potential of Salvia miltiorrhiza and its tanshinones: an efficacy perspective

2016 ◽  
pp. 45 ◽  
Author(s):  
Junxuan Lu ◽  
Wei Wu ◽  
Yong Zhang ◽  
Suni Tang ◽  
Min Ye ◽  
...  
Keyword(s):  
Author(s):  
Caili Li ◽  
Meizhen Wang ◽  
Xiaoxiao Qiu ◽  
Hong Zhou ◽  
Shanfa Lu

Background: Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), small interfering RNAs (siRNAs) and long noncoding RNAs (lncRNAs), play significant regulatory roles in plant development and secondary metabolism and are involved in plant response to biotic and abiotic stresses. They have been intensively studied in model systems and crops for approximately two decades and massive amount of information have been obtained. However, for medicinal plants, ncRNAs, particularly their regulatory roles in bioactive compound biosynthesis, are just emerging as a hot research field. Objective: This review aims to summarize current knowledge on herbal ncRNAs and their regulatory roles in bioactive compound production. Results and Conclusion: So far, scientists have identified thousands of miRNA candidates from over 50 medicinal plant species and 11794 lncRNAs from Salvia miltiorrhiza, Panax ginseng, and Digitalis purpurea. Among them, more than 30 miRNAs and five lncRNAs have been predicted to regulate bioactive compound production. The regulation may achieve through various regulatory modules and pathways, such as the miR397-LAC module, the miR12112-PPO module, the miR156-SPL module, the miR828-MYB module, the miR858-MYB module, and other siRNA and lncRNA regulatory pathways. Further functional analysis of herbal ncRNAs will provide useful information for quality and quantity improvement of medicinal plants.


2020 ◽  
Vol 20 (28) ◽  
pp. 2520-2534
Author(s):  
He Huang ◽  
Chuanjun Song ◽  
Junbiao Chang

: Tanshinones are a class of bioactive compounds present in the Chinese herbal medicine Danshen (Salvia miltiorrhiza Bunge), containing among others, abietane diterpene quinone scaffolds. Chemical synthesis and biological activity studies of natural and unnatural tanshinone derivatives have been reviewed in this article.


2020 ◽  
Vol 7 (2) ◽  
pp. 125-132
Author(s):  
Karen A. Gelmon ◽  
Christian Kollmannsberger ◽  
Stephen Chia ◽  
Anna V. Tinker ◽  
Teresa Mitchell ◽  
...  

Background/Objective: With the increasing interest in natural products, a phase I openlabel study of OMN54 (Aneustat™) in patients with advanced malignancies was initiated to determine toxicity, maximum tolerated dose (MTD), dose limiting toxicities (DLT), and pharmacokinetics (PK). OMN54 is a multitargeted agent, combining three Chinese botanicals; Ganoderma lucidium, Salvia miltiorrhiza and Scutellaria barbata. Methods: Eligible patients (pts) were >18 years of age with advanced solid tumors, able to swallow oral capsules, ECOG performance status < 2, measurable disease as defined by RECIST 1.1 and adequate organ function. Results: Twenty-two patients were enrolled in 6 dose levels, 2 with daily dosing and 4 with twicedaily dosing ranging from 1 to 5 grams daily. All were evaluated for toxicity and 20 for response. No treatment-related dose-limiting toxicities (DLTs) were reported and the recommended phase II dose (RP2D) was determined to be 2.5 g twice daily. Seven adverse events in 5 patients were reported as possibly drug-related; 6 were GI toxicity and 1 was a skin disorder. All were grade 1 except one grade 2 vomiting. No RECIST responses were seen. Six pts were treated with > 2 cycles; one for 8 cycles. Four patients had reductions in TGF –β and EGF, exploratory biomarkers possibly suggestive of a drug effect. Plasma half-lives of 1 -2 hours were noted for all parent drug chemical markers with no accumulation over time. Conclusion: OMN54 was well tolerated, with no DLTs observed. Further studies at the RP2D will assess the biological activity.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Yeni Lim ◽  
Oran Kwon

Abstract Objectives Increasing attention has been paid to a range of botanical food supplement that help to maintain vascular health. Multiple components in botanical foods are expected to be working in concert with various targets. In a previous our animal study, Phellinus baumii and Salvia miltiorrhiza Bunge (PS) ameliorated endothelial and vascular dysfunction in a platelet activation rat model. This study aimed to provide the components, target molecules, phenotypes, signaling pathways, and investigate the mechanism of PS on vascular health. Methods Network biology analysis was based on the data from two clinical trials. The first clinical trial was performed in healthy subjects using high-fat-induced vascular dysfunction model. The second clinical trial was performed in healthy smokers. Differential markers obtained from clinical data, Affymetrix microarray, metabolomics, together with ingredient of PS, were mapped onto the network platform termed the context-oriented directed associations. A network of “component-target-phenotype-pathway” was constructed. Results The resulting vascular health network demonstrates that the components of PS are linked various target molecules for adhesion molecule production, platelet activation, endothelial inflammation, vascular dilation, and mitochondrial metabolism and detoxification, implicated with various metabolic pathways. Conclusions Using network biology methods, this study revealed the components and their target molecules, phenotypes, signaling pathways and provided wider information to support the synergistic mechanisms of PS on vascular health. Funding Sources This research was funded by the Bio & Medical Technology Development Program of the National Research Foundation funded by the Ministry of Science & ICT and the BK21PLUS of the National Research Foundation.


Sign in / Sign up

Export Citation Format

Share Document