scholarly journals Combination Cancer Immunotherapy of Nanoparticle-Based Immunogenic Cell Death Inducers and Immune Checkpoint Inhibitors

2021 ◽  
Vol Volume 16 ◽  
pp. 1435-1456
Author(s):  
Jing Qi ◽  
Feiyang Jin ◽  
Xiaoling Xu ◽  
Yongzhong Du
Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 678 ◽  
Author(s):  
Adrien Procureur ◽  
Audrey Simonaggio ◽  
Jean-Emmanuel Bibault ◽  
Stéphane Oudard ◽  
Yann-Alexandre Vano

The immunogenic cell death (ICD) is defined as a regulated cell death able to induce an adaptive immunity. It depends on different parameters including sufficient antigenicity, adjuvanticity and favorable microenvironment conditions. Radiation therapy (RT), a pillar of modern cancer treatment, is being used in many tumor types in curative, (neo) adjuvant, as well as metastatic settings. The anti-tumor effects of RT have been traditionally attributed to the mitotic cell death resulting from the DNA damages triggered by the release of reactive oxygen species. Recent evidence suggests that RT may also exert its anti-tumor effect by recruiting tumor-specific immunity. RT is able to induce the release of tumor antigens, to act as an immune adjuvant and thus to synergize with the anti-tumor immunity. The advent of new efficient immunotherapeutic agents, such as immune checkpoint inhibitors (ICI), in multiple tumor types sheds new light on the opportunity of combining RT and ICI. Here, we will describe the biological and radiobiological rationale of the RT-induced ICD. We will then focus on the interest to combine RT and ICI, from bench to bedside, and summarize the clinical data existing with this combination. Finally, RT technical adaptations to optimize the ICD induction will be discussed.


Author(s):  
Jing Bai ◽  
Ping Liang ◽  
Qian Li ◽  
Rui Feng ◽  
Jiang Liu

: Hepatocellular Carcinoma (HCC) is one of the most common malignancies, the incidence and mortality of which are increasing worldwide. Cancer immunotherapy has revolutionized cancer treatment in recent years. In particular, Immune Checkpoint Inhibitors (ICIs) as new therapeutic tools have demonstrated encouraging antitumor activity and manageable tolerability in HCC. Immunologic checkpoint blockade with antibodies targeting Programmed cell Death-1 (PD-1), Programmed cell Death Ligand-1 (PD-L1), and Cytotoxic T Lymphocyte-Associated protein-4 (CTLA-4) strengthens tumor immunity by restoring exhausted T cells. Although the efficacy of combination treatment strategies using ICIs combined with other ICIs, molecular targeted agents, systemic therapy, or locoregional therapy has been well documented in numerous preclinical and clinical studies on several types of cancers, most HCC patients do not benefit from ICI treatment. This review highlights recent developments and potential opportunities related to ICIs and their combination in the management of HCC. The present article also includes recent patent review coverage on this topic.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2495
Author(s):  
Kazuhiko Matsuo ◽  
Osamu Yoshie ◽  
Kosuke Kitahata ◽  
Momo Kamei ◽  
Yuta Hara ◽  
...  

Cancer immunotherapy aims to treat cancer by enhancing cancer-specific host immune responses. Recently, cancer immunotherapy has been attracting much attention because of the successful clinical application of immune checkpoint inhibitors targeting the CTLA-4 and PD-1/PD-L1 pathways. However, although highly effective in some patients, immune checkpoint inhibitors are beneficial only in a limited fraction of patients, possibly because of the lack of enough cancer-specific immune cells, especially CD8+ cytotoxic T-lymphocytes (CTLs), in the host. On the other hand, studies on cancer vaccines, especially DC-based ones, have made significant progress in recent years. In particular, the identification and characterization of cross-presenting DCs have greatly advanced the strategy for the development of effective DC-based vaccines. In this review, we first summarize the surface markers and functional properties of the five major DC subsets. We then describe new approaches to induce antigen-specific CTLs by targeted delivery of antigens to cross-presenting DCs. In this context, the chemokine receptor XCR1 and its ligand XCL1, being selectively expressed by cross-presenting DCs and mainly produced by activated CD8+ T cells, respectively, provide highly promising molecular tools for this purpose. In the near future, CTL-inducing DC-based cancer vaccines may provide a new breakthrough in cancer immunotherapy alone or in combination with immune checkpoint inhibitors.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A310-A310
Author(s):  
Krishna Gunturu ◽  
Muhammad Awidi ◽  
Rojer Ranjit ◽  
Brendan Connell ◽  
Rachel Carrasquillo ◽  
...  

BackgroundICI revolutionized modern Oncology landscape and being utilized in metastatic to adjuvant and neo-adjuvant settings. As Oncologists, we are treating cancer patients with ICI every day, yet there is still a lot that is unknown about these drugs. We don’t have clear understanding of the efficacy and toxicity when sequencing one ICI for another. We conducted a retrospective review of real world data at Lahey Hospital and Medical Center to understand further and to pave path for prospective studies to understand this issue further to improve patient care.MethodsWe retrospectively reviewed Oncology patient charts who received ICI between January1, 2014 to December 18, 2018. Total 483 patients received ICI during this time frame and 22 of these patients received a second ICI either as monotherapy or in combination with other ICI or chemotherapy.ResultsA total of 22 patients received subsequent ICI after the initial ICI as showed in table 1. 15 of the 22 (68%) patients were transitioned from one ICI to another monotherapy. 11 of these patients were transitioned secondary to disease progression (73%), three had immune related adverse events and one was switched per standard of care. One patient had ICI re-challenge. Three patients had a transition from ICI monotherapy to combination ICI therapy. One patient went onto chemo-immunotherapy and 2 patients transitioned from combination ICI to chemo-immunotherapy.Abstract 284 Table 1Real world data of sequencing immune checkpoint inhibitors (ICI) after initial ICIConclusionsICI therapy is evolving and patients are being treated with multiple lines of ICI. In current practices, ICI is frequently being transitioned from cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed cell death 1 (PD-1) or its ligand, programmed cell death ligand 1 (PD-L1) classes or combined with chemotherapy or targeted therapy. It would be prudent to explore the effects of sequencing these medications either as a monotherapy or in combination with other therapies to better serve our patients and to prevent financial toxicity.


Author(s):  
Katerina Chatzidionysiou ◽  
Matina Liapi ◽  
Georgios Tsakonas ◽  
Iva Gunnarsson ◽  
Anca Catrina

Abstract Immunotherapy has revolutionized cancer treatment during the last years. Several monoclonal antibodies that are specific for regulatory checkpoint molecules, that is, immune checkpoint inhibitors (ICIs), have been approved and are currently in use for various types of cancer in different lines of treatment. Cancer immunotherapy aims for enhancing the immune response against cancer cells. Despite their high efficacy, ICIs are associated to a new spectrum of adverse events of autoimmune origin, often referred to as immune-related adverse events (irAEs), which limit the utility of these drugs. These irAEs are quite common and can affect almost every organ. The grade of toxicity varies from very mild to life-threatening. The pathophysiological mechanisms behind these events are not fully understood. In this review, we will summarize current evidence specifically regarding the rheumatic irAEs and we will focus on current and future treatment strategies. Treatment guidelines largely support the use of glucocorticoids as first-line therapy, when symptomatic therapy is not efficient, and for more persistent and/or moderate/severe degree of inflammation. Targeted therapies are higher up in the treatment pyramid, after inadequate response to glucocorticoids and conventional, broad immunosuppressive agents, and for severe forms of irAEs. However, preclinical data provide evidence that raise concerns regarding the potential risk of impaired antitumoral effect. This potential risk of glucocorticoids, together with the high efficacy and potential synergistic effect of newer, targeted immunomodulation, such as tumor necrosis factor and interleukin-6 blockade, could support a paradigm shift, where more targeted treatments are considered earlier in the treatment sequence.


Author(s):  
Barbara Barnes Rogers, CRNP, MN, AOCN, ANP-BC ◽  
Carolyn Zawislak, MPAS, PA-C ◽  
Victoria Wong, PA-C

Immune checkpoint inhibitors target suppressor receptors, including cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4), programmed cell death protein 1 (PD-1), and programmed cell death ligand 1 (PD-L1). The activated T cells are not antigen specific; therefore, the blockade of the immune checkpoint may result in the development of autoimmune adverse events. The most common immune-related adverse events (irAEs) are rash, colitis, and endocrinopathies. However, irAEs that affect the hematologic system are rare and can affect red blood cells (e.g., autoimmune hemolytic anemia), white blood cells, and platelets (e.g., immune thrombocytopenia). Usually one cell line is affected; however, in some cases, multiple cell lines can be affected. Other changes in the hematologic system can also be affected (e.g., cryoglobulinemia, cytokine release syndrome). Due to the rarity and lack of recognition of these AEs, the timing, spectrum of events, and clinical presentation are poorly understood. Management of hematologic irAEs usually involves the use of steroids; however, other agents (e.g., IVIG, cyclosporine, rituximab) or procedures (e.g., plasma exchange, transfusions) can also be used.


Thorax ◽  
2021 ◽  
pp. thoraxjnl-2021-217260
Author(s):  
Tommaso Morelli ◽  
Kohei Fujita ◽  
Gil Redelman-Sidi ◽  
Paul T Elkington

Immune checkpoint inhibitors (ICIs) have revolutionised cancer treatment. However, immune-related adverse events (irAEs) are a common side effect which can mimic infection. Additionally, treatment of irAEs with corticosteroids and other immunosuppressant agents can lead to opportunistic infection, which we have classed as immunotherapy infections due to immunosuppression. However, emerging reports demonstrate that some infections can be precipitated by ICIs in the absence of immunosuppressive treatment, in contrast to the majority of reported cases. These infections are characterised by a dysregulated inflammatory immune response, and so we propose they are described as immunotherapy infections due to dysregulated immunity. This review summarises the rapidly emerging evidence of these phenomena and proposes a new framework for considering infection in the context of cancer immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document