Abstract A37: CBP501 induces tumor immunogenic cell death and CD8 T cell infiltration into tumor in combination with platinum, thereby increasing the efficacy of immune checkpoint inhibitors against tumors in mice

Author(s):  
Keiichi Sakakibara ◽  
Takuji Sato ◽  
Donald W. Kufe ◽  
Daniel D. VonHoff ◽  
Takumi Kawabe
2021 ◽  
Vol 8 ◽  
Author(s):  
Yiping Zou ◽  
Zhihong Chen ◽  
Hongwei Han ◽  
Shiye Ruan ◽  
Liang Jin ◽  
...  

Background: Hepatocellular carcinoma (HCC) is the most common histological type of liver cancer, with an unsatisfactory long-term survival rate. Despite immune checkpoint inhibitors for HCC have got glories in recent clinical trials, the relatively low response rate is still a thorny problem. Therefore, there is an urgent need to screen biomarkers of HCC to predict the prognosis and efficacy of immunotherapy.Methods: Gene expression profiles of HCC were retrieved from TCGA, GEO, and ICGC databases while the immune-related genes (IRGs) were retrieved from the ImmPort database. CIBERSORT and WGCNA algorithms were combined to identify the gene module most related to CD8+ T cells in the GEO cohort. Subsequently, the genes in hub modules were subjected to univariate, LASSO, and multivariate Cox regression analyses in the TCGA cohort to develop a risk signature. Afterward, the accuracy of the risk signature was validated by the ICGC cohort, and its relationships with CD8+ T cell infiltration and PDL1 expression were explored.Results: Nine IRGs were finally incorporated into a risk signature. Patients in the high-risk group had a poorer prognosis than those in the low-risk group. Confirmed by TCGA and ICGC cohorts, the risk signature possessed a relatively high accuracy. Additionally, the risk signature was demonstrated as an independent prognostic factor and closely related to the CD8+ T cell infiltration and PDL1 expression.Conclusion: A risk signature was constructed to predict the prognosis of HCC patients and detect patients who may have a higher positive response rate to immune checkpoint inhibitors.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 678 ◽  
Author(s):  
Adrien Procureur ◽  
Audrey Simonaggio ◽  
Jean-Emmanuel Bibault ◽  
Stéphane Oudard ◽  
Yann-Alexandre Vano

The immunogenic cell death (ICD) is defined as a regulated cell death able to induce an adaptive immunity. It depends on different parameters including sufficient antigenicity, adjuvanticity and favorable microenvironment conditions. Radiation therapy (RT), a pillar of modern cancer treatment, is being used in many tumor types in curative, (neo) adjuvant, as well as metastatic settings. The anti-tumor effects of RT have been traditionally attributed to the mitotic cell death resulting from the DNA damages triggered by the release of reactive oxygen species. Recent evidence suggests that RT may also exert its anti-tumor effect by recruiting tumor-specific immunity. RT is able to induce the release of tumor antigens, to act as an immune adjuvant and thus to synergize with the anti-tumor immunity. The advent of new efficient immunotherapeutic agents, such as immune checkpoint inhibitors (ICI), in multiple tumor types sheds new light on the opportunity of combining RT and ICI. Here, we will describe the biological and radiobiological rationale of the RT-induced ICD. We will then focus on the interest to combine RT and ICI, from bench to bedside, and summarize the clinical data existing with this combination. Finally, RT technical adaptations to optimize the ICD induction will be discussed.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wenjie Luo ◽  
Jin Wang ◽  
Xiaoyan Dai ◽  
Hailiang Zhang ◽  
Yuanyuan Qu ◽  
...  

ObjectiveThis study aimed to explore the role of ACSL4 in CD8+ T cell tumor infiltration and outcomes of bladder cancer (BLCA) patients after immunotherapy.MethodsThe correlation between ACSL4 expression and tumor infiltration of immune cells was analyzed using the Tumor Immune Estimation Resource database. The prognostic significance of ACSL4 in BLCA was analyzed using Kaplan–Meier curves. Immunohistochemistry was used to detect CD8+ T cell infiltration in tumors with high and low ACSL4 expression obtained from patients at the Fudan University Shanghai Cancer Center. The relationships between immune checkpoint genes and immune response were analyzed using The Cancer Genome Atlas and IMvigor 210 cohorts. The molecular functions, cellular components, and biological processes involving ACSL4 were explored using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment pathway analyses.ResultsThe expression level of ACSL4 was significantly correlated with the infiltration of CD8+ T cells in BLCA tumors (r = 0.192, P = 2.22e-04). Elevated ACSL4 was associated with suppressed tumor progression and better outcomes for BLCA patients. The higher expression level of ACSL4 predicted better immunotherapeutic responses and was associated with higher expression levels of core immune checkpoint genes, including CD274, CTLA4, PDCD1, and LAG3, compared with the low ACSL4 expression group.ConclusionThis study demonstrated for the first time that elevated ACSL4 correlated significantly with CD8+ T cell infiltration and contributed to better immunotherapeutic responses in BLCA patients. Furthermore, ACSL4 serves as a novel biomarker for predicting patient outcomes after immunotherapeutic treatments, which may improve the development of individualized immunotherapy for BLCA.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhenqing Wang ◽  
Liang Chen ◽  
Yiqun Ma ◽  
Xilei Li ◽  
Annan Hu ◽  
...  

AbstractThe clinical treatment of metastatic spinal tumor remains a huge challenge owing to the intrinsic limitations of the existing methods. Programmed cell death protein 1 (PD1)/programmed cell death ligand 1 (PD-L1) pathway blockade has been explored as a promising immunotherapeutic strategy; however, their inhibition has a low response rate, leading to the minimal cytotoxic T cell infiltration. To ameliorate the immunosuppressive microenvironment of intractable tumor and further boost the efficacy of immunotherapy, we report an all-round mesoporous nanocarrier composed of an upconverting nanoparticle core and a large-pore mesoporous silica shell (UCMS) that is simultaneously loaded with photosensitizer molecules, the IDO-derived peptide vaccine AL-9, and PD-L1 inhibitor. The IDO-derived peptide can be recognized by the dendritic cells and presented to CD8+ cytotoxic T cells, thereby enhancing the immune response and promoting the killing of the IDO-expressed tumor cells. Meanwhile, the near-infrared (NIR) activated photodynamic therapy (PDT) could induce immunogenic cell death (ICD), which promotes the effector T-cell infiltration. By combining the PDT-elicited ICD, peptide vaccine and immune checkpoint blockade, the designed UCMS@Pep-aPDL1 successfully potentiated local and systemic antitumor immunity and reduced the progression of metastatic foci, demonstrating a synergistic strategy for cancer immunotherapy.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e21025-e21025
Author(s):  
Anthony L. Schwartz ◽  
Pulak Nath ◽  
Elizabeth Lessey-Morillon ◽  
Lisa Ridnour ◽  
Michael Allgaeuer ◽  
...  

e21025 Background: Irradiation (IR) combined with chemotherapy is the post-surgical standard of care treatment for melanoma, but metastasis still results in high mortality rates. Immune checkpoint inhibitors such as cytotoxic T-lymphocyte antigen-4 (CTLA4) have proven effective for immunotherapy of melanoma. CTLA-4 is up-regulated post-T cell activation and blockade enhances tumor responses in immunocompetent rodents and humans. Trials suggest that combinations of immune checkpoint inhibitors are more efficacious than single agents, but tumors remain resistant. We are investigating CD47 blockade for the treatment of cancer. CD47 is frequently elevated in cancers and serves as an inhibitory receptor for thrombospondin-1 on immune cells in the tumor stroma. CD47 blockade on CD8 T or tumor cells significantly enhances immune-targeted tumor cell killing post-IR compared to IR alone. Here we explore the potential for antisense CD47 and anti-CTLA4 therapy alone or in combination with IR using a syngeneic mouse melanoma model. Methods: C57BL/6 mice were inoculated with 1x106B16F10 melanoma cells in the hind limb and treated with 10 Gy IR combined with CTLA4 blocking antibody, CD47 translational blocking morpholino, or the combination of CTLA4/CD47 therapies. Granzyme B along with CD4/CD8 T cell infiltration were examined in tumors. Histology was evaluated for CD3 and necrosis. Results: The combination of CD47/CTLA4 with IR significantly increased survival by 25% compared to IR/CTLA4 alone at 50 days. Granzyme B expression was significantly increased in IR mice with CTLA4/CD47 combination, which correlated with infiltration of CD8+ T cells and a concomitant decrease in Gr1+CD11b suppressor cells compared to controls. In non-IR tumors, histology revealed minimal necrosis, while all IR groups showed increased necrosis. Tumor IR in combination with CTLA4 or CD47 increased immune cell infiltration. However, the combination of IR with CTLA4/CD47 showed widespread necrosis. All groups treated with the CD47 exhibited focal hemorrhage, which was more extensive when combined with CTLA4. Conclusions: Results herein suggest IR combined CTLA4/CD47 checkpoint blockade provides a survival benefit by activating a beneficial adaptive immune response.


2020 ◽  
Vol 8 (2) ◽  
pp. e001224 ◽  
Author(s):  
Hussein Sultan ◽  
Juan Wu ◽  
Valentyna I Fesenkova ◽  
Aaron E Fan ◽  
Diane Addis ◽  
...  

BackgroundImmunotherapies, such as immune checkpoint inhibitors and adoptive cell therapies, have revolutionized cancer treatment and resulted in complete and durable responses in some patients. Unfortunately, most immunotherapy treated patients still fail to respond. Absence of T cell infiltration to the tumor site is one of the major obstacles limiting immunotherapy efficacy against solid tumors. Thus, the development of strategies that enhance T cell infiltration and broaden the antitumor efficacy of immunotherapies is greatly needed.MethodsWe used mouse tumor models, genetically deficient mice and vascular endothelial cells (VECs) to study the requirements for T cell infiltration into tumors.ResultsA specific formulation of poly-IC, containing poly-lysine and carboxymethylcellulose (PICLC) facilitated the traffic and infiltration of effector CD8 T cells into the tumors that reduced tumor growth. Surprisingly, intratumoral injection of PICLC was significantly less effective in inducing tumor T cell infiltration and controlling growth of tumors as compared with systemic (intravenous or intramuscular) administration. Systemically administered PICLC, but not poly-IC stimulated tumor VECs via the double-stranded RNA cytoplasmic sensor MDA5, resulting in enhanced adhesion molecule expression and the production of type I interferon (IFN-I) and T cell recruiting chemokines. Expression of IFNαβ receptor in VECs was necessary to obtain the antitumor effects by PICLC and IFN-I was found to directly stimulate the secretion of T cell recruiting chemokines by VECs indicating that this cytokine-chemokine regulatory axis is crucial for recruiting effector T cells into the tumor parenchyma. Unexpectedly, these effects of PICLC were mostly observed in tumors and not in normal tissues.ConclusionsThese findings have strong implications for the improvement of all types of T cell-based immunotherapies for solid cancers. We predict that systemic administration of PICLC will improve immune checkpoint inhibitor therapy, adoptive cell therapies and therapeutic cancer vaccines.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
John Apostolidis ◽  
Ayman Sayyed ◽  
Mohammed Darweesh ◽  
Panayotis Kaloyannidis ◽  
Hani Al Hashmi

Cancer cells escape immune recognition by exploiting the programmed cell-death protein 1 (PD-1)/programmed cell-death 1 ligand 1 (PD-L1) immune checkpoint axis. Immune checkpoint inhibitors that target PD-1/PD-L1 unleash the properties of effector T cells that are licensed to kill cancer cells. Immune checkpoint blockade has dramatically changed the treatment landscape of many cancers. Following the cancer paradigm, preliminary results of clinical trials in lymphoma have demonstrated that immune checkpoint inhibitors induce remarkable responses in specific subtypes, most notably classical Hodgkin lymphoma and primary mediastinal B-cell lymphoma, while in other subtypes, the results vary considerably, from promising to disappointing. Lymphomas that respond to immune checkpoint inhibitors tend to exhibit tumor cells that reside in a T-cell-rich immune microenvironment and display constitutive transcriptional upregulation of genes that facilitate innate immune resistance, such as structural variations of the PD-L1 locus, collectively referred to as T-cell-inflamed lymphomas, while those lacking such characteristics are referred to as noninflamed lymphomas. This distinction is not necessarily a sine qua non of response to immune checkpoint inhibitors, but rather a framework to move the field forward with a more rational approach. In this article, we provide insights on our current understanding of the biological mechanisms of immune checkpoint evasion in specific subtypes of B-cell and T-cell non-Hodgkin lymphomas and summarize the clinical experience of using inhibitors that target immune checkpoints in these subtypes. We also discuss the phenomenon of hyperprogression in T-cell lymphomas, related to the use of such inhibitors when T cells themselves are the target cells, and consider future approaches to refine clinical trials with immune checkpoint inhibitors in non-Hodgkin lymphomas.


Sign in / Sign up

Export Citation Format

Share Document