scholarly journals Topical Delivery of Rapamycin by Means of Microenvironment-Sensitive Core-Multi-Shell Nanocarriers: Assessment of Anti-Inflammatory Activity in an ex vivo Skin/T Cell Co-Culture Model

2021 ◽  
Vol Volume 16 ◽  
pp. 7137-7151
Author(s):  
Fiorenza Rancan ◽  
Xiao Guo ◽  
Keerthana Rajes ◽  
Polytimi Sidiropoulou ◽  
Fatemeh Zabihi ◽  
...  
Author(s):  
Mansi L. Patil ◽  
Swati S. Gaikwad ◽  
Naresh J. Gaikwad

Introduction: Pain is an immunological response to any infection or inflammation and long term use of pain management therapy includes use of Nonsteroidal anti-inflammatory drugs which is associated with occurrence of toxicity as well as gastrointestinal bleeding. Therefore, the investigation of new analgesic and anti-inflammatory agents remains a major challenge. Aims: The objective of this research study is to undergo the pharmacological evaluation of newly synthesized benzoxazole derivatives. These novel derivatives were evaluated for anti-nociceptive, anti-inflammatory and cytotoxic activity using various in-vivo and ex-vivo methods. Methods: The study was carried out using swiss mice (adult male) weighing between 20gm to 30gm and were divided into groups containing (n=6) six animals in each group for treatment. The anti-nociceptive activity was performed by using 0.1ml of 0.6% v/v acetic acid as nociception inducer and evaluated by the diminished number of abdominal writhes. The anti-inflammatory activity was done using 0.1 ml of 2% w/v Carrageenan induced paw edema method was observed which was evaluated by calculating the percent maximum possible effect. Histopathological evaluation and cytotoxic activity of the compounds was carried out. Results: The results of this research study revealed that synthesized derivatives (a, b, c, d and e) showed promising anti-nociceptive and anti-inflammatory effect along significantly higher cytotoxic activity in MCF-7 cell lines. Conclusion: It can be concluded that synthesized derivatives (a, b, c, d and e) have potential anti-nociceptive and anti-inflammatory effect along with cytotoxic activity and certain modification in structure may result in potent activity.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 709 ◽  
Author(s):  
Blanca Lorenzo-Veiga ◽  
Patricia Diaz-Rodriguez ◽  
Carmen Alvarez-Lorenzo ◽  
Thorsteinn Loftsson ◽  
Hakon Hrafn Sigurdsson

The aim of this study was to design and evaluate novel cyclodextrin (CD)-based aggregate formulations to efficiently deliver nepafenac topically to the eye structure, to treat inflammation and increase nepafenac levels in the posterior segment, thus attenuating the response of inflammatory mediators. The physicochemical properties of nine aggregate formulations containing nepafenac/γ-CD/hydroxypropyl-β (HPβ)-CD complexes as well as their rheological properties, mucoadhesion, ocular irritancy, corneal and scleral permeability, and anti-inflammatory activity were investigated in detail. The results were compared with a commercially available nepafenac suspension, Nevanac® 3 mg/mL. All formulations showed microparticles, neutral pH, and negative zeta potential (–6 to –27 mV). They were non-irritating and nontoxic and showed high permeation through bovine sclera. Formulations containing carboxymethyl cellulose (CMC) showed greater anti-inflammatory activity, even higher than the commercial formulation, Nevanac® 0.3%. The optimized formulations represent an opportunity for topical instillation of drugs to the posterior segment of the eye.


Theranostics ◽  
2018 ◽  
Vol 8 (2) ◽  
pp. 450-463 ◽  
Author(s):  
M. Giulbudagian ◽  
G. Yealland ◽  
S. Hönzke ◽  
A. Edlich ◽  
B. Geisendörfer ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Mysrayn Y. F. A. Reis ◽  
Simone M. dos Santos ◽  
Danielle R. Silva ◽  
Márcia V. Silva ◽  
Maria Tereza S. Correia ◽  
...  

Babassu oil extraction is the main income source in nut breakers communities in northeast of Brazil. Among these communities, babassu oil is used for cooking but also medically to treat skin wounds and inflammation, and vulvovaginitis. This study aimed to evaluate the anti-inflammatory activity of babassu oil and develop a microemulsion system with babassu oil for topical delivery. Topical anti-inflammatory activity was evaluated in mice ear edema using PMA, arachidonic acid, ethyl phenylpropiolate, phenol, and capsaicin as phlogistic agents. A microemulsion system was successfully developed using a Span® 80/Kolliphor® EL ratio of 6 : 4 as the surfactant system (S), propylene glycol and water (3 : 1) as the aqueous phase (A), and babassu oil as the oil phase (O), and analyzed through conductivity, SAXS, DSC, TEM, and rheological assays. Babassu oil and lauric acid showed anti-inflammatory activity in mice ear edema, through inhibition of eicosanoid pathway and bioactive amines. The developed formulation (39% A, 12.2% O, and 48.8% S) was classified as a bicontinuous to o/w transition microemulsion that showed a Newtonian profile. The topical anti-inflammatory activity of microemulsified babassu oil was markedly increased. A new delivery system of babassu microemulsion droplet clusters was designed to enhance the therapeutic efficacy of vegetable oil.


2021 ◽  
Author(s):  
Jordana Grazziela A. Coelho dos Reis ◽  
Geovane Marques Ferreira ◽  
Alice Aparecida Lourenco ◽  
Agata Lopes Ribeiro ◽  
Camila Pacheco da Silveira Martins da Mata ◽  
...  

COVID-19 is a lethal disease caused by the pandemic SARS-CoV-2, which continues to be a public health threat. COVID-19 is principally a respiratory disease and is often associated with sputum retention, for which there are limited therapeutic options. In this regard, we evaluated the use of BromAc, a combination of Bromelain and Acetylcysteine (NAC). Both drugs present mucolytic effect and have been studied to treat COVID-19. Therefore, we sought to examine the mucolytic, antiviral, and anti-inflammatory effect of BromAc in tracheal aspirate samples from critically ill COVID-19 patients requiring mechanical ventilation. Method: Tracheal aspirate samples from COVID-19 patients were collected following next of kin consent and mucolysis, rheometry and cytokine storm analysis was performed. Results: BromAc displayed a robust mucolytic effect in a dose dependent manner. BromAc showed anti-inflammatory activity, reducing the action of cytokine storm, chemokines including MIP-1alpha, CXCL8, MIP-1b, MCP-1 and IP-10, and regulatory cytokines IL-5, IL-10, IL-13 IL-1RA and total reduction for IL-9 compared to NAC alone and control. BromAc acted on IL-6, demonstrating a reduction in G-CSF and VEGF-D at concentrations of 125 and 250ug. Conclusion: These results indicate robust mucolytic and anti-inflammatory effect of BromAc in tracheal aspirates from critically ill COVID-19 patients, indicating its potential as a therapeutic strategy to COVID-19.


Author(s):  
Tobias Roider ◽  
Berit J. Brinkmann ◽  
Vladislav Kim ◽  
Mareike Knoll ◽  
Carolin Kolb ◽  
...  

Bispecific antibodies (BsAb) can induce long-term responses in refractory and relapsed B cell lymphoma patients. Nevertheless, response rates across patients are heterogenous and the factors determining quality and duration of responses are poorly understood. In order to identify key determinants of response to BsAb, we established a primary, autologous culture model allowing us to mimic treatment with CD3xCD19 and CD3xCD20 BsAb within the lymph node microenvironment ex vivo. T cell-mediated killing of lymphoma cells and proliferation of T cells varied significantly among patients but highly correlated between BsAb targeting CD20 or CD19. Ex vivo response to BsAb was significantly associated with expansion of T cells and secretion of effector molecules, such as granzyme B and perforin, but not with expression of T cell exhaustion (e.g. PD1, TIM3) or activation markers (e.g. CD25, CD69) or formation of intercellular contacts. In addition, we identified a distinct phenotype of regulatory T cells that was linked to ex vivo response independently from T cell frequency at baseline. High expression levels of Aiolos (IKZF1), ICOS and CXCR5 were positively associated with ex vivo response, whereas strong expression of Helios (IKZF2) had unfavorable impact on ex vivo response to BsAb. Furthermore, we demonstrated that lenalidomide, nivolumab and atezolizumab improved ex vivo response to BsAb by potentiating T cell effector functions. In summary, our ex vivo study identifies a distinct regulatory T cell phenotype as potential contributor to treatment failure of BsAb, and suggests drug combinations of high clinical relevance that could improve the efficacy of BsAb.


2021 ◽  
Vol 11 (3) ◽  
pp. 3745-3769

Previously, it has been claimed that artemisinin derivatives, e.g., dihydroartemisinin, possess very potent anti-inflammatory activity. The study aimed to formulate gels based on surface-modified nanostructured lipid carrier (NLC) and contain dihydroartemisinin (DHA) to treat localized inflammation. NLC was developed using Softisan®154 and Tetracarpidium conophorum oil and structured using PEG 4000. Physicochemical characterization of NLC, including surface charge, particle size, and encapsulation efficiency (EE%), was evaluated. NLCwas dispersed in hydroxypropyl cellulose, and the resulting nanogels were evaluated for drug content, ex vivo permeation, and anti-inflammatory activity. The surface charge and particle size of NLC ranged from -15.3 ± 1.1 to -25.5 ± 2.1 mV and 85.5 ± 8.6 – 108.7 ± 5.5 nm respectively. EE% of NLC was in the range of 90.0 ± 1.21 – 99.3 ± 1.60 %. NLC gels had high drug content (83 – 99 %). Ex vivo permeation study showed sustained-release of DHA over 24 h. The gels produced a sustained-release reduction of egg albumin-induced inflammation in rats up to 8 h for 7 days. Development of surface-modified lipid nanoparticles-based gel containing DHA produced controlled release of the drug localized inflammation.


Sign in / Sign up

Export Citation Format

Share Document