scholarly journals Imaging Study on Acupuncture Inhibiting Inflammation and Bone Destruction in Knee Osteoarthritis Induced by Monosodium Iodoacetate in Rat Model

2022 ◽  
Vol Volume 15 ◽  
pp. 93-103
Author(s):  
Qian Tan ◽  
Zhengkun Cai ◽  
Jia Li ◽  
Jing Li ◽  
Hongchun Xiang ◽  
...  
2020 ◽  
Vol 15 (12) ◽  
pp. 1934578X2098211
Author(s):  
Tuyen Danh Le ◽  
Hien Thi Thu Vu ◽  
Iddamalgoda Arunasiri ◽  
Kenichi Ito ◽  
Tadahiro Makise ◽  
...  

Proteoglycan (PG) is a type of glycoprotein which forms an extracellular matrix with collagen and hyaluronic acid to maintain articular cartilage, synovial membrane, and synovial fluid. This study aimed to evaluate the antiosteoarthritis effects of salmon nasal cartilage-derived PG in alleviating knee osteoarthritis in an osteoarthritis rat model. Knee osteoarthritis was induced in rats by intra-articular injection of monosodium iodoacetate (MIA), 3 mg/knee, to the right knee. Animals were then administered either diclofenac (3 mg/kg body weight [b.w]/day) or proteoglycan F (PGF; 40 mg/kg and 120 mg/kg b.w/day) by oral gavage for 6 consecutive weeks. Knee diameters were measured throughout the experimental period; serum interleukin-1β and tumor necrosis factor-alpha (TNF-α) levels, and histological analysis of the ligament were carried out at the end of the experiment. Salmon cartilage PG considerably alleviated the osteoarthritis symptoms in the model and lowered the serum concentrations of interleukin-1β and TNF-α. Diclofenac 3 mg/kg/day and PGF at doses of 40 mg/kg/day and 120 mg/kg/day also improved articular cartilage structure on further histological studies. This study demonstrated the in vivo effect of salmon cartilage PG in attenuating symptoms in an MIA-induced rat model, including reduction of inflammatory markers and histological improvement of cartilage tissue.


PLoS ONE ◽  
2018 ◽  
Vol 13 (4) ◽  
pp. e0196625 ◽  
Author(s):  
Ikufumi Takahashi ◽  
Taro Matsuzaki ◽  
Hiroshi Kuroki ◽  
Masahiro Hoso

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yu Chen ◽  
Jiuheng Lv ◽  
Yejuan Jia ◽  
Ruiqing Wang ◽  
Zidi Zhang ◽  
...  

In this study, a knee osteoarthritis (KOA) rat model induced by monosodium iodoacetate (MIA) was used to study the effect of moxibustion on improving knee cartilage damage and its effect on the intestinal flora. The experimental rats were divided into the normal group (N), model group (M), moxibustion treatment group (MS), and diclofenac sodium treatment group (DS). After 4 weeks, cartilage pathological damage in the knee joint was evaluated using hematoxylin-eosin and safranin O-fast green staining analysis. ELISAs and Western blots were used to detect the expression levels of IL-1β and TNF-α in the serum and cartilage, respectively. The total DNA of the fecal samples was extracted and subjected to high-throughput sequencing of the V3-V4 region of the 16S rRNA gene to analyze the changes in the intestinal flora. In the model group, the cartilage was obviously damaged, the expression levels of IL-1β and TNF-α in the serum and cartilage were increased, and the abundance and diversity of the intestinal flora were decreased. Moxibustion treatment significantly improved the cartilage damage and reduced the concentration of inflammatory factors in the serum and cartilage. The high-throughput sequencing results showed that compared to the model group, the moxibustion treatment regulated some specific species in the intestinal microorganisms rather than the α diversity. In conclusion, our findings suggest that moxibustion treatment may work through two aspects in rats. On one hand, it directly acts on knee cartilage to promote repair, and on the other hand, it regulates the composition of the intestinal flora and reduces the production of inflammatory factors.


PLoS ONE ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. e0231240
Author(s):  
Rodrick Montjean ◽  
Sonia Escaich ◽  
Raffaello Paolini ◽  
Claude Carelli ◽  
Sébastien Pirson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document