scholarly journals DYNAMIC THREE-POINTS-BENDING TEST MODE OF TWO AMORPHOUS POLYMER MATERIALS (PMMA, PC) FOR THEIR VISCOELASTIC AND MECHANICAL CHARACTERIZATION

2021 ◽  
Vol 9 (08) ◽  
pp. 448-453
Author(s):  
Ayarema Afio ◽  
◽  
Komlan Lolo ◽  
Kodjo Attipou ◽  
Komla Assogba Kassegne ◽  
...  

This paper presents an approach to classifying amorphous polymer materials. Temperature is This classification involves the determination of mechanical and viscoelastic characteristics considered a descriptive variable to clarify the specific field of practical applications of amorphous polymers. according to the reference temperature characterizing the behaviour of polymer materials. The mechanical and viscoelastic characteristics of amorphous polymers such as methyl poly-methacrylate (PMMA), polycarbonate (PC) and imide poly ether (PEI) are determined through the three-point dynamically embedded test carried out in an adiabatic close enclosure. The complex dissipative or conservative modules according to the temperature are represented. The results obtained show that the fluidity index of these materials is linked to their viscosity, which is a determining property which is decisive for the choice of the technique of the application of the material. Our method of measuring properties is therefore, in principle, comparable to the techniques used in industrial development.

2017 ◽  
Vol 5 (3) ◽  
pp. 8
Author(s):  
KUMAR DINESH ◽  
KAUR ARSHDEEP ◽  
AGGARWAL YUGAM KUMAR ◽  
UNIYAL PIYUSH ◽  
KUMAR NAVIN ◽  
...  

2017 ◽  
Vol 52 (3) ◽  
pp. 395-404
Author(s):  
Xiuqi Lyu ◽  
Jun Takahashi ◽  
Yi Wan ◽  
Isamu Ohsawa

Chopped carbon fiber tape-reinforced thermoplastic material is specifically developed for the high-volume production of lightweight automobiles. With excellent design processability and flexibility, the carbon fiber tape-reinforced thermoplastic material is manufactured by compressing large amounts of randomly oriented, pre-impregnated unidirectional tapes in a plane. Therefore, the carbon fiber tape-reinforced thermoplastic material presents transversely isotropic properties. Transverse shear effect along the thickness direction of carbon fiber tape-reinforced thermoplastic beam has a distinct influence on its flexural deformation. Accordingly, the Timoshenko beam theory combined with vibration frequencies was proposed to determine the set of transverse flexural and shear moduli. Meanwhile, the transverse flexural and shear moduli of carbon fiber tape-reinforced thermoplastic beam were finally determined by fitting all the first seven measured and calculated eigenfrequencies with the least squares criterion. In addition, the suggested thickness to length ratio for the 3-point bending test and Euler–Bernoulli model was given.


2015 ◽  
Vol 1129 ◽  
pp. 151-158
Author(s):  
Takako Tokura ◽  
Joyce Lim ◽  
Ai Ming Chua ◽  
Wey Liang Lee ◽  
James Wong

Polymers are commonly used in concrete materials. The type and concentration of polymer are important information for stakeholders, because they have a critical impact on the properties of concrete materials. Therefore, reliable and accurate information is highly desirable. To this end, Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetric Analysis (TGA) are used to analyze polymer contents in construction materials.FTIR spectroscopy is a suitable technique to identify the polymer type using IR spectrum matching. Additionally, functional group information can be easily obtained from each peak. Attenuated Total Reflection (ATR) method can be used to measure extracted polymers from construction materials to obtain IR spectra, and match against the library database to identify the polymer materials. TGA is one of the common thermal analysis methods. It measures the weight loss or gain of sample due to chemical reactions such as vaporization, decomposition and oxidation as a function of temperature. In this paper, we will discuss development of reliable analytical methods with which mixtures of polymer, fine aggregate and cement with different percentages of polymer content were prepared and evaluated.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1333 ◽  
Author(s):  
Adrián Rodríguez-Panes ◽  
Juan Claver ◽  
Ana Camacho

This paper presents a comparative study of the tensile mechanical behaviour of pieces produced using the Fused Deposition Modelling (FDM) additive manufacturing technique with respect to the two types of thermoplastic material most widely used in this technique: polylactide (PLA) and acrylonitrile butadiene styrene (ABS). The aim of this study is to compare the effect of layer height, infill density, and layer orientation on the mechanical performance of PLA and ABS test specimens. The variables under study here are tensile yield stress, tensile strength, nominal strain at break, and modulus of elasticity. The results obtained with ABS show a lower variability than those obtained with PLA. In general, the infill percentage is the manufacturing parameter of greatest influence on the results, although the effect is more noticeable in PLA than in ABS. The test specimens manufactured using PLA perform more rigidly and they are found to have greater tensile strength than ABS. The bond between layers in PLA turns out to be extremely strong and is, therefore, highly suitable for use in additive technologies. The methodology proposed is a reference of interest in studies involving the determination of mechanical properties of polymer materials manufactured using these technologies.


Resources ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 47 ◽  
Author(s):  
Alexey Cherepovitsyn ◽  
Dmitry Metkin ◽  
Alexander Gladilin

Currently, under the conditions of increasing depletion of hydrocarbon reserves in Russia, it is necessary to consider the resource potential of poorly-researched oil and gas objects as a factor for ensuring the sustainable development of the oil and gas complex, in the context of the concept formation of rational subsoil utilization and a circular economy. The methodology of this study is based on a clear sequence of geological and economic studies of poorly-researched oil and gas objects, including four stages, such as analysis of the raw material base, assessment of the raw material potential, determination of technological development parameters, and economic evaluation. The methods of the probabilistic estimation of oil resources of the forecasted objects with regard to geological risk are outlined. Software packages “EVA—Risk Analysis” and “EVA—Economic Evaluation of Oil and Gas Field Development Projects” were used for estimation. The result of the study is the determination of the geological and economic efficiency of the development of nine hydrocarbon objects with the determination of the order of their further geological exploration, and introduction into industrial development on the example of the poorly-researched region of the Timan-Pechora oil and gas province located in the Arctic zone.


2016 ◽  
Vol 3 ◽  
pp. 47-50
Author(s):  
Birgit Neitzel ◽  
Florian Aschermayer ◽  
Milan Kracalik ◽  
Sabine Hild

Polymers have various interesting properties, which depend largely on their inner structure. One way to influence the macroscopic behaviour is the deformation of the polymer chains, which effects the change in microstructure. For analyzing the microstructure of non-deformed and deformed polymer materials, Raman spectroscopy as well as differential scanning calorimetry (DSC) were used. In the present study we compare the results for crystallinity measurements of deformed polymers using both methods in order to characterize the differences in micro-structure due to deformation. The study is ongoing, and we present the results of the first tests.


Sign in / Sign up

Export Citation Format

Share Document