scholarly journals USES OF BIOFERTILIZATION TO PRODUCE TROPICAL GRASS FORAGE IN QUINTANA ROO MEXICO

2021 ◽  
Vol 9 (09) ◽  
pp. 303-309
Author(s):  
Sosa-Rubio Edgar Enrique ◽  
◽  
Herrera-Cool Gilbert Jose ◽  
Zavaleta-Cordova Maria Del Carmen ◽  
◽  
...  

The objective of this study was to evaluate the biofertilizers effect in Panicum maximaum (cv. Mombaza) and Brachiaria brizantha tropical grasses production. Microorganisms were obtained in rhizosphere of plants. To establish an effective symbiosis with native strains of Azospirillum, Azotobacter and mycorrhizal fungi, experiments were carried out in greenhouse and field. The biofertilizers used in greenhouse were combined (CC), semisolid medium Nitrogen free with malate as nitrogen source (NFB), Azotobacter (azot) and Azospirillum (Azos). For mycorrhizal fungi, 6 treatments were used: T1-control, T2-fertilized, T3-brown spore, T4-honey spore, T4-black spore and T5-commercial spore. The microorganism used in field were those that showed effectivity in greenhouse. The treatments in field were T1: control, T2: inorganic fertilizer, T3: Azospirillum + Azotobacter, T4: mycorrhizal and T5: commercial biofertilizer. The variables evaluated were dry weight (DW), radicular weight (RW), radicular volume (RV), stem diameter (SD) and total height (TH). Results for B. brizantha indicate differences (P≤0.05). Application of Azospirillum + Azotobacter (T3) favored the development of the height of the plant and the diameter of the stem. The commercial biofertilizer (T5) increased the production of dry matter with 0.99 kg/m2. In respect with P. maximum (cv. Mombaza) grass, they were not detected significative differences (P≥0.05) between treatments, however, the biological results showed that inorganic fertilizer (T2) increased the dry matter production with 1.34 kg / m2 in comparison with Azospirillum + Azotobacter (T3) that showed 0.72 kg / m2.

Author(s):  
Eduardo A L Erasmo ◽  
Rogério C Gonçalves ◽  
Jhansley F Da Mata ◽  
Vinícius A Oliveira ◽  
Luíz P F Benício

This study aims to evaluate the density and planting period of the grass Brachiaria brizantha in consortium with the soybean. The study was conducted under field conditions at the experimental station of University of Tocantins. The experimental design used was a randomized block design, in factorial scheme of (2 x 5) + 4, with four repetitions, including both sowing of Brachiaria brizantha (20 and 30 days after the emergence – DAE, of soybeans), five Brachiaria seeding densities (0, 3, 6, 9, and 12kg of seed ha-1) and Brachiaria grown individually in the four densities tested, constituting itself as witness reference. To assess the growth of the Brachiaria, the plants contained in an area of ​​(0.33 x 0.40m) to 140 DAP of soy were collected in each plot, determining the number of tillers per plant; height and dry weight of shoots; leaf dry mass and dry mass stalk. Data were submitted to regression analysis. The cultivation of Brachiaria intercropped with soybean provoked a decrease in all parameters evaluated. The increase in the density of sowing promoted a reduction in the tillering and an increase in dry matter production and height of the plant.


Weed Science ◽  
1988 ◽  
Vol 36 (6) ◽  
pp. 751-757 ◽  
Author(s):  
David T. Patterson ◽  
Maxine T. Highsmith ◽  
Elizabeth P. Flint

Cotton, spurred anoda, and velvetleaf were grown in controlled-environment chambers at day/night temperatures of 32/23 or 26/17 C and CO2concentrations of 350 or 700 ppm. After 5 weeks, CO2enrichment to 700 ppm increased dry matter accumulation by 38, 26, and 29% in cotton, spurred anoda, and velvetleaf, respectively, at 26/17 C and by 61, 41, and 29% at 32/23 C. Increases in leaf weight accounted for over 80% of the increase in total plant weight in cotton and spurred anoda in both temperature regimes. Leaf area was not increased by CO2enrichment. The observed increases in dry matter production with CO2enrichment were caused by increased net assimilation rate. In a second experiment, plants were grown at 350 ppm CO2and 29/23 C day/night for 17 days before exposure to 700 ppm CO2at 26/17 C for 1 week. Short-term exposure to high CO2significantly increased net assimilation rate, dry matter production, total dry weight, leaf dry weight, and specific leaf weight in comparison with plants maintained at 350 ppm CO2at 26/17 C. Increases in leaf weight in response to short-term CO2enrichment accounted for 100, 87, and 68% of the observed increase in total plant dry weight of cotton, spurred anoda, and velvetleaf, respectively. Comparisons among the species showed that CO2enrichment decreased the weed/crop ratio for total dry weight, possibly indicating a potential competitive advantage for cotton under elevated CO2, even at suboptimum temperatures.


1969 ◽  
Vol 20 (3) ◽  
pp. 417 ◽  
Author(s):  
JH Silsbury

Lolium rigidum Gaud. and a summer-dormant and a non-dormant form of Lolium perenne L. were grown as seedling plants for 32 days in controlled environment cabinets at constant temperatures of either 10, 20, or 30°C and in all cases with a 16-hr photoperiod at a light intensity of 3600 lm ft-2. Sampling at 4-day intervals permitted the detailed examination of dry matter growth curves. Differences in total dry matter production were related to initial differences in seedling dry weight, and the general responses to temperature were similar for each ryegrass. Total dry matter production was greatest at 20°C and lowest at 10°. A temperature of 30° did not induce dormancy in the summer-dormant ryegrass but did depress growth. Relative growth rate fell with time at each temperature.


1979 ◽  
Vol 6 (2) ◽  
pp. 187 ◽  
Author(s):  
JHM Thornley

A model of the wheat plant is described which consists of two components, the grain and storage material. Photosynthesis supplies further substrate to the store, from which material is used for grain growth at a rate that depends on the substrate level. The model allows predictions of grain dry weight at maturity and its dependence on total post-anthesis dry matter production, and leads to an interpretation of the source-sink interactions in this situation.


2020 ◽  
Vol 8 (2) ◽  
pp. 265
Author(s):  
Pedro Luan Ferreira da Silva ◽  
Flávio Pereira de Oliveira ◽  
Walter Esfrain Pereira ◽  
Adriana Ferreira Martins ◽  
Camila Costa da Nóbrega ◽  
...  

The aim of this study was to assess the correlation between physical attributes of a Yellow Oxisol and the shoot dry matter production in grasses from the Brachiaria genus in the Brejo region, in Paraíba. The experiment has been conducted since 2005 in an experimental area of the Center of Agricultural Sciences of the Federal University of Paraíba, Areia-PB (6°58’12’’ S; 35°41’15’’ W and 573 m altitude). The experimental design adopted was that of randomized complete blocks (RCB) with 4 treatments and 4 replications. T1- Brachiaria decumbens Stapf.; T2- Brachiaria brizantha (Hochst) Stapf.; T3- Brachiaria humidicola (Rendle) Schwnickerdt Vr.; T4- Brachiaria brizantha MG5 cv. Vitória. The soil in the experimental area was characterized as Dystrophic Yellow Oxisol with clay-sandy texture. Soil samples with disturbed and undisturbed structure were collected within the 0.0-0.10 m layer. The shoot dry matter of grasses was collected in october of 2018. The analyzed variables were: bulk density (BD), compaction degree (CD), total porosity (TP), macroporosity (Ma), microporosity (Mi), field capacity (θFC), permanent wilting point (θPWP), available water content (θAWC), soil aeration capacity (SAC), mean weighted diameter of wet and dry aggregates (Wet and Dry MWD), aggregate stability index (ASI) and saturated hydraulic conductivity (Kθ). The Student’s t-test and Pearson's correlation analysis (p <0.05) were performed. It was concluded that dry matter production was positively influenced by θFC and θPWP. And the increase of the average values of BD, CD, Wet and Dry MWD favored the increase of shoot dry matter production by grasses.


1970 ◽  
Vol 34 (1) ◽  
pp. 67-73
Author(s):  
M SH Islam ◽  
MSU Bhuiya ◽  
AR Gomosta ◽  
AR Sarkar ◽  
MM Hussain

Pot experiments were conducted during T. aman 2001 and 2002 (wet season) at Bangladesh Rice Research Institute (BRRI) in net house. Hybrid variety Sonarbangla-1 and inbred modern variety BRRI dhan-31 were used in both the seasons and BRRI hybrid dhan-l was used in 2002. The main objective of the experiments was to compare the growth and yield behaviour of hybrid and inbred rice varieties under controlled condition. In 2001, BRRI dhan-3l had about 10-15% higher plant height, very similar tillers/plant, 15-25% higher leaf area at all days after transplanting (DAT) compared to Sonarbangla-1. Sonarbangla- 1 had about 40% higher dry matter production at 25 DAT but had very similar dry matter production at 50 and 75 DAT, 4-11% higher rooting depth at all DATs, about 22% higher root dry weight at 25 DAT, but 5-10% lower root dry weight at 50 and 75 DAT compared to BRRI dhan-31. The photosynthetic rate was higher (20 μ mol m-2/sec-1) in BRRI dhan-3l at 35 DAT (maximum tillering stage) but at 65 DAT, Sonarbangla-l had higher photosynthetic rate of 19.5 μ mol m-2 sec-1. BRRI dhan-3l had higher panicles/plant than Sonarbangla-1, but Sonarbangla-1 had higher number of grains/panicle, 1000-grain weight and grain yield than BRRI dhan-31. In 2002, BRRI dhan-31 had the highest plant height at 25 DAT, but at 75 DAT, BRRI hybrid dhan-l had the highest plant height. Sonarbangla-1 had the largest leaf area at 25 and 50 DAT followed by BRRI dhan-31, but at 75 DAT, BRRI dhan-31 had the largest leaf area. The highest shoot dry matter was observed in BRRI dhan-31 followed by Sonarbangla-1 at all DATs. Sonarbangla-1 had the highest rooting depth and root dry weight at all DATs. BRRI dhan-31 gave the highest number of panicles/plant followed by Sonarbangla-I, BRRI hybrid dhan-l had the highest grains/panicle followed by BRRI dhan-31 and Sonarbangla-I had the highest 1000-grain weight followed by BRRI dhan-31. The highest amount of grains/plant (34.6 g) was obtained from BRRI dhan-31. Key Words: Shoot dry matter; root dry weight; leaf area; photosynthesis; grain yield. DOI: 10.3329/bjar.v34i1.5755Bangladesh J. Agril. Res. 34(1) : 67-73, March 2009


1980 ◽  
Vol 10 (3) ◽  
pp. 426-428
Author(s):  
S. Thompson

The components of shoot growth and dry matter production in 1 + 0 lodgepole pine (Pinuscontorta Dougl. ex Loud. spp. contorta) seedlings raised under clear polythene cloches for 12 weeks at five seedbed densities (180–720 plants/m2) were studied. The greater plant height found at the highest seedbed density was the result of increased stem unit length, not increased number of stem units. The increase in plant dry weight as seedbed density decreased was largely due to greater dry weight of roots, branchwood, and branch foliage, and not to increases in stemwood and stem foliage weight. Seedbed densities of less than 460 seedlings/m2 are required to produce yields of suitably sturdy seedlings in excess of 50% of the crop.


1984 ◽  
Vol 20 (3) ◽  
pp. 215-224 ◽  
Author(s):  
S. N. Azam-Ali ◽  
P. J. Gregory ◽  
J. L. Monteith

SUMMARYPearl millet was grown on stored water at Niamey, Niger, using three row spacings. Water extraction based on neutron probe readings was compared with crop transpiration using a porometer and allied measurements. Between 23 and 52 days after sowing, plants at the narrow and medium spacings used about 77 and 100 mm of water, respectively, and those at the wide spacing used between 59 and 75 mm. Estimates of seasonal crop evaporation from leaf resistances and from the green leaf area index (GLAI) of the crops were 103, 130 and 123 mm for the narrow, medium and wide spacings, respectively. The water use per unit of dry weight produced was similar for both narrow and medium spacings but water was used more efficiently in the wide spacing. Dry weight increased in proportion to intercepted radiation with the same efficiency (1·3 g MJ−1) irrespective of spacing.


2010 ◽  
Vol 10 ◽  
pp. 1282-1292 ◽  
Author(s):  
Auldry Chaddy Petrus ◽  
Osumanu Haruna Ahmed ◽  
Ab Majid Nik Muhamad ◽  
Hassan Mohammad Nasir ◽  
Make Jiwan

Agricultural waste, such as sago waste (SW), is one of the sources of pollution to streams and rivers in Sarawak, particularly those situated near sago processing plants. In addition, unbalanced and excessive use of chemical fertilizers can cause soil and water pollution. Humic substances can be used as organic fertilizers, which reduce pollution. The objectives of this study were to produce K- and ammonium-based organic fertilizer from composted SW and to determine the efficiency of the organic-based fertilizer produced. Humic substances were isolated using standard procedures. Liquid fertilizers were formulated except for T2 (NPK fertilizer), which was in solid form. There were six treatments with three replications. Organic fertilizers were applied to soil in pots on the 10th day after sowing (DAS), but on the 28th DAS, only plants of T2 were fertilized. The plant samples were harvested on the 57th DAS during the tassel stage. The dry matter of plant parts (leaves, stems, and roots) were determined and analyzed for N, P, and K using standard procedures. Soil of every treatment was also analyzed for exchangeable K, Ca, Mg, and Na, organic matter, organic carbon, available P, pH, total N, P, nitrate and ammonium contents using standard procedures. Treatments with humin (T5 and T6) showed remarkable results on dry matter production; N, P, and K contents; their uptake; as well as their use efficiency by maize. The inclusion of humin might have loosened the soil and increased the soil porosity, hence the better growth of the plants. Humin plus inorganic fertilizer provided additional nutrients for the plants. The addition of inorganic fertilizer into compost is a combination of quick and slow release sources, which supplies N throughout the crop growth period. Common fertilization by surface application of T2 without any additives (acidic and high CEC materials) causes N and K to be easily lost. High Ca in the soil may have reacted with phosphate from fertilizer to form Ca phosphate, an insoluble compound of phosphate that is generally not available to plants, especially roots. Mixing soil with humin produced from composted SW before application of fertilizers (T5 and T6) significantly increased maize dry matter production and nutrient use efficiency. Additionally, this practice does not only improve N, P, and K use efficiency, but it also helps to reduce the use of N-, P-, and K-based fertilizers by 50%.


Sign in / Sign up

Export Citation Format

Share Document