scholarly journals Design and Development of Transdermal Patches of Antipsychotic Drug: In vitro and Ex vivo Characterization

Author(s):  
Himabindu Peddapalli ◽  
Anjaneyulu Rajagoni ◽  
Preethi Pagilla ◽  
Jerusha Perumala ◽  
Shilpa Puppala ◽  
...  

The purpose of the present research work was to design, assess, and estimate the developed transdermal matrix-type formulation comprising levosulpiride hydrochloride with the objective of enhancing the bioavailability and compliance of the patient. Transdermal films of levosulpiride were developed using a solvent casting method by hydroxypropyl methylcellulose (HPMC) E 15, Eudragit RL 100, and Eudragit RS100. In current research work, propylene glycol and oleic acid was used as plasticizer and permeation enhancers in different fractions. Among the batches, drug content uniformity with all formulations was perceived between 91.6 to 98%. Folding endurance of patches was good and indicates satisfactory flexibility. Developed transdermal films had the necessary physicochemical properties, for example, uniformity of drug content, weight, thickness, folding endurance, and dampness content. Franz diffusion cell was used for in vitro diffusion studies utilizing dialysis membrane as a pervasion boundary. Formulation F5 (Eudragit RL 100-1%, HPMC E15-9%) was found to be best among all batches of its consistent release rate for 12 hours and the extent of drug release 97.76%. F5 was the most palatable formulation as it firmly meets the standards and continuously permeated drugs for 12 hours that can keep up desired therapeutic concentration in plasma. The patches were exposed to transient stability studies and were observed to be constant and stable.

Author(s):  
Rita N Wadetwar ◽  
Tejaswini Charde

Objective: The objective of the present work was the preparation of fast-dissolving film of tramadol HCl (TMH) using water-soluble polymer, to achieve faster onset of action, to improve patient compliance, ease of dosing, and bypass the first-pass metabolism. Methods: TMH oromucosal wafers were prepared using pullulan as natural, biodegradable polymer, and propylene glycol as plasticizer by solvent casting method. Formulation batches were prepared using 32 full-factorial designs. The prepared TMH oromucosal wafers were characterized for morphology, uniformity of weight, drug content, folding endurance, in vitro disintegration time (DT), % moisture content, surface pH, in vitro % drug release, ex vivo permeation studies, compatibility studies (differential scanning calorimetry, Fourier transform infrared spectroscopy, and X-ray diffraction), and stability studies.Results: Optimized batch of mouth-dissolving film of TMH containing pullulan as polymer showed 98.67±0.11% drug release at 6 min. It showed better folding endurance 88 No. of folds, in vitro DT 5.11 s, surface pH 6.84±0.12 pH, thickness 0.17±0.11 mm, and percentage content uniformity 98.45±0.48%. Stability studies carried out for the best formulation FDF5 revealed that the formulation was stable.Conclusion: The results obtained in this research work clearly indicated a promising potential of fast-dissolving oral films using natural biodegradable polymer, pullulan which gave rapid drug delivery and rapid onset of action of centrally acting drug, TMH for patients suffering from pain.


Author(s):  
Vedanshu Malviya ◽  
Srikant Pande

The intention of the present study was to formulate the oral dispersible film of Fluoxetine hydrochloride using pullulan as a polymer and to evaluate it with the different parameters. The drug-excipients studies were carried out in order to determine any type of incompatibilities by using Fourier transmission infrared spectroscopy (FT-IR). The oral dispersible films were prepared using solvent casting method using pullulan as a polymer. Glycerin was used as a plasticizer. The prepared films were evaluated for the parameters like physical appearance, thickness, folding endurance, In-vitro disintegration, mechanical properties, surface pH, drug content uniformity, taste evaluation, In-vitro dissolution test and stability study. The X5 formulation was found to be stable and appropriate in its evaluation parameters than compared to other formulations. The folding endurance was found to be 259±2.53, disintegration time was found to be 04±0.69, thickness was found to be 0.081±0.003, tensile strength was found to be 5.55, the % elongation was found to be 27.50, the maximum percentage drug release was found to be 95.80% in 30 minutes. The drug content was found to be 99.86 with surface pH of 6.8. In the stability studies of the formulation the product was found to be stable for 90 days. The oral dispersible film is simple to administer and very much effective for the patients and the prepared film of fluoxetine hydrochloride proves to be potential candidate for safe and effective oral dispersible drug delivery.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2666
Author(s):  
Pattaraporn Panraksa ◽  
Suruk Udomsom ◽  
Pornchai Rachtanapun ◽  
Chuda Chittasupho ◽  
Warintorn Ruksiriwanich ◽  
...  

Extrusion-based 3D printing technology is a relatively new technique that has a potential for fabricating pharmaceutical products in various dosage forms. It offers many advantages over conventional manufacturing methods, including more accurate drug dosing, which is especially important for the drugs that require exact tailoring (e.g., narrow therapeutic index drugs). In this work, we have successfully fabricated phenytoin-loaded orodispersible films (ODFs) through a syringe extrusion 3D printing technique. Two different grades of hydroxypropyl methylcellulose (HPMC E5 and HPMC E15) were used as the film-forming polymers, and glycerin and propylene glycol were used as plasticizers. The 3D-printed ODFs were physicochemically characterized and evaluated for their mechanical properties and in vitro disintegration time. Then, the optimum printed ODFs showing good mechanical properties and the fastest disintegration time were selected to evaluate their drug content and dissolution profiles. The results showed that phenytoin-loaded E15 ODFs demonstrated superior properties when compared to E5 films. It demonstrated a fast disintegration time in less than 5 s and rapidly dissolved and reached up to 80% of drug release within 10 min. In addition, it also exhibited drug content uniformity within United States Pharmacopeia (USP) acceptable range and exhibited good mechanical properties and flexibility with low puncture strength, low Young’s modulus and high elongation, which allows ease of handling and application. Furthermore, the HPMC E15 printing dispersions with suitable concentrations at 10% w/v exhibited a non-Newtonian (shear-thinning) pseudoplastic behavior along with good extrudability characteristics through the extrusion nozzle. Thus, HPMC E15 can be applied as a 3D printing polymer for a syringe extrusion 3D printer.


Author(s):  
SARIPILLI RAJESWARI ◽  
M. YERNI KUMARI

Objective: The main aim of the present research work was to formulate fast dissolving tablets of famotidine by direct compression method and to evaluate the effect of synthetic super disintegrating agent on drug release pattern. Methods: The fast dissolving tablets were prepared by using crospovidone, croscarmellose sodium, sodium starch glycolate as superdisintegrants (2, 4 and 6 %w/w), mannitol 20 % and microcrystalline cellulose (44, 46 and 48 % w/w) as a directly compressible vehicle. All the prepared tablets were evaluated for hardness, friability, drug content uniformity, weight variation, disintegrating time, wetting time and in vitro drug release studies. Results: All the prepared fast dissolving tablets formulations were within the Pharmacopoeial standards limits. Based on in vitro drug release studies (>90 % within 30 min), the optimised formulations were optimised tested for the short term stability (at 40 ˚C/75% RH for 3 mo) and drug excipient interaction (fourier transform infrared spectroscopy). Conclusion: Hence, formulation prepared with 6 % w/w of crosspovidine and 44 % w/w of microcrystalline cellulose as emerged as the overall best formulation (>90 % within 30 min) compared to marketed product (>70 % within 30 min). Short-term stability studies on the formulations indicated that there are no significant changes in drug content and in vitro drug release (p<0.05).


Author(s):  
SHIFA SHAUKAT HAJU ◽  
SHEELA YADAV

Objective: Buccal drug delivery is the most suited route for local as well as systemic delivery of drugs. Cilnidipine is an L/N type dihydropyridine 4th generation calcium channel blocker (CCB), which decreases hypertension by blocking the N-type calcium channel to attenuate vascular sympathetic neurotransmission. It has high first-pass metabolism leading to low bioavailability. Hence the present research work was undertaken to formulate mucoadhesive buccal film of Cilnidipine with an objective to enhance therapeutic efficacy, bioavailability and was developed to administer into the unconscious and less-co-operative patients. Methods: Cilnidipine buccal films were prepared by a solvent-casting technique using various concentrations of mucoadhesive-polymers such as Hydroxyl propyl methylcellulose (HPMC) E15 and K4M and ethyl-cellulose as backing-layer, which acts like a patch providing unidirectional drug release. Prepared films were evaluated for their weight variation, thickness, surface-pH, swelling-index, drug content uniformity, in vitro residence time, folding endurance, tensile strength, in vitro release and permeability studies. Results: The infra-red (IR) spectra showed no interaction, and Physico-chemical characteristics were found within the limit. Swelling of the film increases with increasing concentration of polymers and %drug content of all formulations found to be in the range of 92.13%±0.94% to 97.92%±0.35%. The formulation F5, showed a promising tensile strength, folding endurance and in vitro drug release of about 95.18±0.03%, thus can be selected as an optimized formulation of mucoadhesive buccal film. Conclusion: The formulation of Cilnidipine mucoadhesive buccal film was found to be satisfactory and reasonable.


2020 ◽  
Vol 10 (1-s) ◽  
pp. 66-71
Author(s):  
Monika Dhaka ◽  
Rupa Mazumdar ◽  
Md Rafiul Haque

Ocuserts or Ophthalmic inserts are sterile preparations containing drug as dispersion or as solution in the polymeric support. The sulbactum is highly used as antibacterial agent in combination with other antibacterial agent. This study aims to formulate novel sulbactum ocuserts to enhance patient compliance through providing controlled drugs release from polymeric matrix. Ocuserts were prepared by solvent-casting method using different polymers HPMC, K4M, Polyvinyl alcohol,ethyl cellulose as polymer gelatine and propylene glycol and dibutyl phthalate as plasticizer in different ratios. The prepared ocusters were physic-chemichally evaluated for their weight, thickness, drug content uniformity, surface pH, swelling index (SI) and folding endurance. The viscosity of the polymeric solution used for the formulations was determined using Brookfield viscometer. In-Vitro Drug Release study and Accelerated stability studies were also performed. The prepared ocuserts show uniform weight, thickness and drug content. Their surface pH was in the physiological range and showed acceptable folding endurance. HPMC formulas had higher SI values. Results of in-vitro testing for one of the prepared ocuserts shows slow release of drugs up to 24 hours. One of the prepared ocuserts is promising for once-daily effective and safe drug delivery system of sulbactum for glaucoma treatment. Keyword: Ocuserts, sulbactum, viscosity, Ophthalmic


2019 ◽  
Vol 25 (4) ◽  
pp. 311-318
Author(s):  
Marzieh Fathei ◽  
Mitra Alami-milani ◽  
Sara Salatin ◽  
Sharahm Sattari ◽  
Hassan Montazam ◽  
...  

Background: Isosorbide dinitrate (ISDN) is used for treating the angina attacks. In addition, oral ISDN is available in immediate and sustained release formulations and the bioavailability of ISDN is about 20-25% when taken orally. Further, the ISDN films are developed for sublingual drug delivery by improving drug bioavailability. The present study aimed to design and evaluate the physicochemical properties of the film formulation for sublingual delivery of ISDN. Methods: In the present study, sublingual films were prepared by the solvent casting technique using the hydroxypropyl methylcellulose (HPMC) polymers (i.e., 100, 150 and 200 mg) with a different drug to polymer ratios (i.e., 1:5, 1:7.5 and 1:10). Then, ISDN was evaluated for the film appearance, drug content, surface pH, mucoadhesion force, differential scanning calorimetry (DSC), in vitro drug release, and ex vivo permeability. Results: Based on the results, F3 formulation (1:10 ISDN to HPMC ratio) showed acceptable thickness (0.93 mm), weight (11.14 mg), surface pH (7.82), moisture absorption capacity (6.08%), elasticity (>200), mucoadhesion force (18.05 N/cm2), and drug content (6.22%). Furthermore, the results demonstrated that HPMC polymer improved the characteristics of the films, modified the bioadhesiveness, and finally, enhanced elasticity. However, DSC thermogram failed to show any crystalline drug substance in the films except for F1 (immediate release) and the endothermic peak of ISDN was absent in F2 and F3 films. Therefore, the drug which was entrapped into the film was in an amorphous or disturbed-crystalline phase of the molecular dispersion or dissolved in the melted polymer in the polymeric matrix. Moreover, the drug release from the films was faster compared to the tablet® (P<0.05). Conclusion: In general, the formulation of F1 was observed to be an appropriate candidate for developing the sublingual film for the remedial use.


Author(s):  
BHUVANESHWARI R. SHARANNAVAR ◽  
ANAND P. GADAD

Objective: The aim of the present work was to develop and characterize mucoadhesive film of spray dried Lovastatin (LVS) for buccal delivery to enhance bioavailability. Methods: Mucoadhesive films were prepared by solvent casting technique by using different polymers HPMCK4M, HPMC E5LV and chitosan. The successful patches were evaluated for film thickness, weight, content uniformity, surface pH, swelling index, folding endurance, ex-vivo residence time, ex-vivo bioadhesion test, in vitro drug release, ex-vivo drug permeation and stability study. Results: The thickness of all prepared patches ranged from 0.21±0.07 to 1.5±0.39 mm, the weight of the film 89.10±0.6 to 128.57±0.3 mg, drug content 85.47±0.87 to 97.33±0.31%, surface pH 5.6±0.67 to 7.6±0.98, swelling index 23.0±4.1 to 76.5±3.6%, folding endurance 165±1.9 to 350±2.5 respectively. Ex-vivo residence time ranged from 2.2±0.08to 8.2±0.17 h and ex-vivo bioadhesive strength 30±0.64 to 66±0.43 g. The formulations with HPMC E5 shown short period of residence time and shows weak force of adhesion., which might be because of low viscosity of the polymer which resulted into weak adhesion. The percentage drug release and ex-vivo drug permeation was in the following descending order HPMC K4M>HPMC E5LV>chitosan. These results confirm the extension of drug release in case of ionic polymer chitosan. The kinetics data shows that drug release and permeation follows nonfiction diffusion. Accelerated stability data revealed that there is no significant change in drug content, in vitro drug release and ex-vivo permeation. Conclusion: It can be concluded that mucoadhesive buccal patch is a promising dosage form to enhance the drug bioavailability by preventing first-pass metabolism thus providing better therapeutic efficacy.


2019 ◽  
Vol 22 (2) ◽  
pp. 228-234 ◽  
Author(s):  
Sreebash Chandra Bhowmik ◽  
Marzia Alam ◽  
Md Saiful Islam Pathan

The purpose of the current study was to develop a fast dissolving polymeric oral thin film containing palonosetron hydrochloride having good mechanical properties, fast disintegration, dissolution and good drug content uniformity. Solvent casting method was used to prepare the films. Compatibility between drugs and excipients were studied using FTIR and HPLC. Nine different formulations of film from F1 to F9 were prepared using different concentration of polymer A at drug-polymer A ratio (1:26), (1:28), (1:30), (1:32), (1:34), (1:36), (1:38), (1:40), (1:42) and at polymer A-plasticizer B of (65:10), (70:10), (75:10), (40:10), (42.5:10), (45:10), (47.5:10), (50:10), (52.5:10), respectively. The in vitro dissolution study was carried out in phosphate buffer (pH 6.8) at 37±0.5oC and 50 rpm using USP XXIV paddle method. Physicochemical evaluations of all the batches were performed including weight variation, thickness, folding endurance, pH, in vitro disintegration and drug release, FTIR and content uniformity test. Maximum and minimum drug dissolution were found in F6 (108.7%) and in F1 (98.5%), respectively. The maximum and minimum disintegration time were in F9 (43.8 sec) and F1 (25 sec), respectively which demonstrated that disintegration of the film was directly proportional to the polymer A and plasticizer B concentration. It is quite evident from the present research work that the film prepared using polymer A-plasticizer B were smooth, mechanically strong and easy to peel out. Among all the batches, formulation F5 showed best results with respect to disintegration (33 sec), drug dissolution (105%), content uniformity (98.51%) and folding endurance (731). Therefore, it can be said that combination of polymer A and plasticizer B can be prospectively used for the preparation of palonosetron hydrochloride oral thin film. Bangladesh Pharmaceutical Journal 22(2): 228-234, 2019


2019 ◽  
Vol 9 (1-s) ◽  
pp. 295-300
Author(s):  
Dr. Shayeda ◽  
Nusrat Ayesha

The purpose of this work was to design and evaluate matrix type transdermal patches of Tizanidine hydrochloride using Hypromellose (HPMC E15) as polymer, dibutyl phthalate as plasticizer and citral as permeation enhancer. The DSC and FTIR results showed the compatibility of the excipients with the drug. These transdermal drug delivery systems were characterized for their thickness, folding endurance, content uniformity, tensile strength and in-vitro release studies of the drug from the polymeric matrix. In-vitro release studies and ex-vivo permeation were carried out with modified Franz diffusion cell using pH 5.8 & pH 7.4 phosphate buffers as receptor medium and it showed controlled release of drug. The results suggest that the formulation of TIZ may be useful in the development of a therapeutic system to deliver TIZ across the skin for a prolonged period, i.e. 24 hr. Keywords: Tizanidine Hydrochloride, Transdermal patch, HPMC E15, in-vitro & ex-vivo.


Sign in / Sign up

Export Citation Format

Share Document