scholarly journals Decadal Variability in the Terrestrial Carbon Budget Caused by the Pacific Decadal Oscillation and Atlantic Multidecadal Oscillation

2011 ◽  
Vol 89 (5) ◽  
pp. 441-454 ◽  
Author(s):  
Akihiko ITO
2019 ◽  
Vol 32 (5) ◽  
pp. 1443-1459 ◽  
Author(s):  
Tao Geng ◽  
Yun Yang ◽  
Lixin Wu

Abstract Changes of the Pacific decadal oscillation (PDO) under global warming are investigated by using outputs from phase 5 of the Coupled Model Intercomparison Project (CMIP5) and a theoretical midlatitude air–sea coupled model. In a warming climate, the decadal variability of the PDO is found to be significantly suppressed, with the amplitude reduced and the decadal cycle shifted toward a higher-frequency band. We used the theoretical model put forward by Goodman and Marshall (herein the GM model) to underpin the potential mechanisms. The GM model exhibits a growing coupled mode that resembles the simulated PDO. It is found that the suppression of the PDO appears to be associated with the acceleration of Rossby waves due to the enhanced oceanic stratification under global warming. This shortens the PDO period and reduces PDO amplitude by limiting the growth time of the coupled mode. The GM model also suggests that the increase of growth rate due to strengthening of oceanic stratification tends to magnify the PDO amplitude, counteracting the Rossby wave effect. This growth rate influence, however, plays a secondary role.


2013 ◽  
Vol 26 (1) ◽  
pp. 343-350 ◽  
Author(s):  
Scott J. Weaver

Abstract Decadal variability of summertime Great Plains surface temperature is probed from the perspective of the Great Plains low-level jet (GPLLJ). GPLLJ variability modes 2 and 5 are shown to be most influential on the evolution and magnitude of Great Plains surface temperature anomalies over the latter half of the twentieth century, including the development of the summertime warming hole and are further linked to the Pacific decadal oscillation (PDO) and Atlantic multidecadal oscillation (AMO), respectively. The connection between GPLLJ variability and Great Plains surface temperature is strongest when the PDO and AMO are oppositely phased, and in the case of the warming hole, a preference for a positive (negative) PDO (AMO). The influence of remote SST variability on the central U.S. warming hole is broadly consistent with previous modeling studies. However, the pivotal role that GPLLJ variability plays in linking the hemispheric-wide SST variability (through the AMO and PDO) to the regional warming hole is an expanded and clarified perspective. These findings unify the results of recent studies from the U.S. Climate Variability and Predictability (CLIVAR) Drought Working Group and have implications for decadal climate prediction efforts.


2020 ◽  
Author(s):  
Shujun Li

<p><strong>The Pacific Decadal Oscillation (PDO) is the most prominent form of decadal variability over the North Pacific, characterized by its horseshoe-like sea surface temperature (SST) anomaly pattern. The PDO exerts a substantial influence on marine ecosystems, fisheries, and agriculture. Through modulating global mean temperature, the phase shift of the PDO at the end of the 20th century is suggested to be an influential factor in the recent surface warming hiatus. Therefore, determining the predictability of the PDO in a warming climate is of great importance. By analyzing future climate under different emission scenarios simulated by the Coupled Model Intercomparison Project phase 5 (CMIP5), we show that the prediction lead time and the associated amplitude of the PDO decreases sharply under greenhouse warming conditions. This decrease is largely attributable to a warming-induced intensification of oceanic stratification, which accelerates propagation of Rossby waves, shortening the PDO lifespan and suppressing its amplitude by limiting its growth time. Our results suggest that greenhouse warming will make prediction of the PDO more challenging, with far-reaching ramifications.   </strong></p>


2015 ◽  
Vol 11 (5) ◽  
pp. 743-750 ◽  
Author(s):  
M. W. Strassburg ◽  
B. D. Hamlington ◽  
R. R. Leben ◽  
P. Manurung ◽  
J. Lumban Gaol ◽  
...  

Abstract. Southeast Asian seas span the largest archipelago in the global ocean and provide a complex oceanic pathway connecting the Pacific and Indian oceans. The Southeast Asian sea regional sea level trends are some of the highest observed in the modern satellite altimeter record that now spans almost 2 decades. Initial comparisons of global sea level reconstructions find that 17-year sea level trends over the past 60 years exhibit good agreement with decadal variability associated with the Pacific Decadal Oscillation and related fluctuations of trade winds in the region. The Southeast Asian sea region exhibits sea level trends that vary dramatically over the studied time period. This historical variation suggests that the strong regional sea level trends observed during the modern satellite altimeter record will abate as trade winds fluctuate on decadal and longer timescales. Furthermore, after removing the contribution of the Pacific Decadal Oscillation (PDO) to sea level trends in the past 20 years, the rate of sea level rise is greatly reduced in the Southeast Asian sea region. As a result of the influence of the PDO, the Southeast Asian sea regional sea level trends during the 2010s and 2020s are likely to be less than the global mean sea level (GMSL) trend if the observed oscillations in wind forcing and sea level persist. Nevertheless, long-term sea level trends in the Southeast Asian seas will continue to be affected by GMSL rise occurring now and in the future.


2013 ◽  
Vol 26 (4) ◽  
pp. 1445-1456 ◽  
Author(s):  
Wilbert Weijer ◽  
Ernesto Muñoz ◽  
Niklas Schneider ◽  
François Primeau

Abstract A systematic study is presented of decadal climate variability in the North Pacific. In particular, the hypothesis is addressed that oceanic Rossby basin modes are responsible for enhanced energy at decadal and bidecadal time scales. To this end, a series of statistical analyses are performed on a 500-yr control integration of the Community Climate System Model, version 3 (CCSM3). In particular, a principal oscillation pattern (POP) analysis is performed to identify modal behavior in the subsurface pressure field. It is found that the dominant energy of sea surface temperature (SST) variability at 25 yr (the model equivalent of the Pacific decadal oscillation) cannot be explained by the resonant excitation of an oceanic basin mode. However, significant energy in the subsurface pressure field at time scales of 17 and 10 yr appears to be related to internal ocean oscillations. However, these oscillations lack the characteristics of the classical basin modes, and must either be deformed beyond recognition by the background circulation and inhomogeneous stratification or have another dynamical origin altogether. The 17-yr oscillation projects onto the Pacific decadal oscillation and, if present in the real ocean, has the potential to enhance the predictability of low-frequency climate variability in the North Pacific.


2020 ◽  
pp. 1-41
Author(s):  
Xiaogu Zheng ◽  
Carsten S. Frederiksen

AbstractDecadal mean variables are frequently used to characterise decadal climate variabilities. Decadal means are often calculated using yearly data which can represent variability at time scales from annual to centennial. Residuals from interannual fluctuations may contribute to the variability in decadal time series. Such variability is more difficult to be predicted at the long range. Removing it from the decadal variability means that the remaining variability is more likely to arise from slowly varying multi-decadal or longer time scale external forcing and internal climate dynamics which are more likely to be predicted.Here, a new approach is proposed to understand the uncertainty, potential predictability and drivers of decadal mean variables. The covariance matrix of multivariate decadal running means is decomposed into unpredictable fast decadal variability and the potentially predictable slow decadal variability. EOF analysis is then applied to the decomposed matrices to find the dominant modes which may be related to the drivers of the two types of variabilities in the multivariate decadal means.The methodology has been applied to 140 year datasets of North Pacific sea surface temperature and the Northern Hemisphere 1000hPa geopotential height. For sea surface temperature, the Pacific Decadal Oscillation is the major driver of the fast decadal variability, while the radiative forcing and the Atlantic Multi-decadal Oscillation are major drivers of the slow decadal variability. For the 1000hPa geopotential height, fast decadal variability is associated with the Northern Annular Mode, the East Atlantic Mode and the Pacific Decadal Oscillation. Slow decadal variability is associated with the Northern Annular Mode and the Atlantic Multi-decadal Oscillation.


Sign in / Sign up

Export Citation Format

Share Document