ASSESSMENT OF DISEASE RESISTANCE OF WINTER BARLEY BREEDING LINES

Author(s):  
Natalia Valentinovna Repko ◽  
Dmitry Nikolaevich Serdyukov
2011 ◽  
Vol 41 (No. 2) ◽  
pp. 45-50 ◽  
Author(s):  
A. Dreiseitl

Powdery mildew resistances in Czech winter barley breeding lines were postulated on the basis of their reaction types to 32 pathotypes of the pathogen with different combinations of virulence genes. The results from testing 38 lines represent a substantial part of found variability in the examined trait with 13 found resistances. The resistances typical of winter barley cultivars dominated in six-row lines whereas the resistances typical of spring barley cultivars were more frequent in two-row lines. None of these resistances was effective enough to all used pathotypes. Desired effectiveness is present neither in the lines with a combination of corresponding resistances nor in the cases when their resistance is controlled by more (up to six) postulated genes. Resistances “Ch” (detected in the line CH 669) and “Lu” (detected in the line LU 1258/A/02) are novel, the former without any practical importance. A need of breeding winter barley cultivars resistant to powdery mildew is discussed since they are required for both conventional and particularly low-input farming systems.


2019 ◽  
Vol 23 (1) ◽  
pp. 110-118 ◽  
Author(s):  
V. N. Gudzenko

Due to current global climate changes, the issue of improving adaptive capacity of crops is of high importance. It is important to create winter crop varieties with both ecological adaptability and yield stability in years with different hydrothermal conditions. In order to develop winter barley varieties with a combination of yield and stability, 14 promising breeding lines have been evaluated in the conditions of the V.M. Remeslo Myronovka Institute of Wheat of NAAS of Ukraine in 2012/2013–2014/2015 using four different sowing dates. The ANOVA revealed a reliable part in yield variation: 64.59 % for environment, 16.84 % for genotype–environment interaction, and 15.57 % for genotype. The sowing dates significantly increased the yield variation of the breeding lines. The differences between the average yields of the lines depending on sowing date within the year were 1.05 t/ha in 2012/2013, 0.90 t/ha in 2013/2014, and 1.25 t/ha in 2014/2015. For genotype–environment interaction interpretation and ranking lines by yield a number of the most known statistical parameters of adaptability, stability, and plasticity and GGE biplot were applied. The use of different sowing dates at the final stage of the winter barley breeding process is a simple but effective approach that allows a more detailed assessment of the adaptive potential of breeding lines in various growing conditions. As compared to statistical parameters, GGE biplot has some advantages for interpretation of genotype–environment interaction. This graphic model allows ranking environments to be visualized for their discriminating ability and representativeness, as well as both specifically adapted genotypes and the ones with the optimal combination of yield potential and stability to be identified in a set of environments (mega-environment). The breeding line Pallidum 4816 with the optimal combination of yield and stability, as well as the high-yielding breeding lines Pallidum 4857 and Pallidum 4659 were identified and submitted to the State Variety Testing of Ukraine as the new winter barley varieties MIP Yason, MIP Oskar and MIP Hladiator.


2021 ◽  
Vol 22 (3) ◽  
pp. 1057
Author(s):  
Magdalena Wójcik-Jagła ◽  
Agata Daszkowska-Golec ◽  
Anna Fiust ◽  
Przemysław Kopeć ◽  
Marcin Rapacz

Mechanisms involved in the de-acclimation of herbaceous plants caused by warm periods during winter are poorly understood. This study identifies the genes associated with this mechanism in winter barley. Seedlings of eight accessions (four tolerant and four susceptible to de-acclimation cultivars and advanced breeding lines) were cold acclimated for three weeks and de-acclimated at 12 °C/5 °C (day/night) for one week. We performed differential expression analysis using RNA sequencing. In addition, reverse-transcription quantitative real-time PCR and enzyme activity analyses were used to investigate changes in the expression of selected genes. The number of transcripts with accumulation level changed in opposite directions during acclimation and de-acclimation was much lower than the number of transcripts with level changed exclusively during one of these processes. The de-acclimation-susceptible accessions showed changes in the expression of a higher number of functionally diverse genes during de-acclimation. Transcripts associated with stress response, especially oxidoreductases, were the most abundant in this group. The results provide novel evidence for the distinct molecular regulation of cold acclimation and de-acclimation. Upregulation of genes controlling developmental changes, typical for spring de-acclimation, was not observed during mid-winter de-acclimation. Mid-winter de-acclimation seems to be perceived as an opportunity to regenerate after stress. Unfortunately, it is competitive to remain in the cold-acclimated state. This study shows that the response to mid-winter de-acclimation is far more expansive in de-acclimation-susceptible cultivars, suggesting that a reduced response to the rising temperature is crucial for de-acclimation tolerance.


Plant Disease ◽  
2011 ◽  
Vol 95 (3) ◽  
pp. 263-268 ◽  
Author(s):  
S. K. Gremillion ◽  
A. K. Culbreath ◽  
D. W. Gorbet ◽  
B. G. Mullinix ◽  
R. N. Pittman ◽  
...  

Field experiments were conducted in 2002 to 2006 to characterize yield potential and disease resistance in the Bolivian landrace peanut (Arachis hypogaea) cv. Bayo Grande, and breeding lines developed from crosses of Bayo Grande and U.S. cv. Florida MDR-98. Diseases of interest included early leaf spot, caused by the fungus Cercospora arachidicola, and late leaf spot, caused by the fungus Cercosporidium personatum. Bayo Grande, MDR-98, and three breeding lines, along with U.S. cvs. C-99R and Georgia Green, were included in split-plot field experiments in six locations across the United States and Bolivia. Whole-plot treatments consisted of two tebuconazole applications and a nontreated control. Genotypes were the subplot treatments. Area under the disease progress curve (AUDPC) for percent defoliation due to leaf spot was lower for Bayo Grande and all breeding lines than for Georgia Green at all U.S. locations across years. AUDPC for disease incidence from one U.S. location indicated similar results. Severity of leaf spot epidemics and relative effects of the genotypes were less consistent in the Bolivian experiments. In Bolivia, there were no indications of greater levels of disease resistance in any of the breeding lines than in Bayo Grande. In the United States, yields of Bayo Grande and the breeding lines were greater than those of the other genotypes in 1 of 2 years. In Bolivia, low disease intensity resulted in the highest yields in Georgia Green, while high disease intensity resulted in comparable yields among the breeding lines, MDR-98, and C-99R. Leaf spot suppression by tebuconazole was greater in Bolivia than in the United States. This result indicates a possible higher level of fungicide resistance in the U.S. population of leaf spot pathogens. Overall, data from this study suggest that Bayo Grande and the breeding lines may be desirable germplasm for U.S. and Bolivian breeding programs or production.


1997 ◽  
Vol 77 (4) ◽  
pp. 639-640 ◽  
Author(s):  
D. E. Falk ◽  
E. Reinbergs ◽  
G. Meatherall

OAC Elmira is a high-yielding, disease-resistant, hardy winter barley adapted to Southern Ontario. OAC Elmira has good winter hardiness and high hectoliter weight. It has better disease resistance than any of the check cultivars and long straw with a lax, nodding head. It was developed by the Ontario Ministry of Agriculture and Food through the Crop Science Department of the University of Guelph. Key words: Hordeum vulgare L., high yield, disease resistance, winter hardiness


Crop Science ◽  
2013 ◽  
Vol 53 (4) ◽  
pp. 1447-1454 ◽  
Author(s):  
M. J. Edney ◽  
W. G. Legge ◽  
M. S. Izydorczyk ◽  
T. Demeke ◽  
B. G. Rossnagel

2011 ◽  
Vol 52 (No. 9) ◽  
pp. 392-401 ◽  
Author(s):  
N. Bukvayová ◽  
M. Henselová ◽  
V. Vajcíková ◽  
T. Kormanová

The aim of the study was to monitor the incidence and to detect the presence of viruses of yellow dwarfness in barley (BYDV-PAV, BYDV-RMV), of yellow dwarfness in cereals (CYDV-RPV) and dwarfness in wheat (WDV) in stands of winter wheat and winter barley in Slovakia. During the period 2001–2004 a total of 292 samples coming from 150 localities were analyzed. This involved 190 samples of winter wheat (39 varieties and 13 breeding lines) and 102 samples of winter barley (17 varieties and 7 breeding lines). The detection of viruses was carried out with the aid of the method DAS and TAS ELISA. During the years surveyed, the occurrence of the various viruses differed. In 2001, the most represented virus proved to be the WDV (68%); in 2002, it was the strain PAV of the virus BYDV (93%); in 2003, the most numerous were the virus WDV (71%) and the strain PAV of virus BYDV (67%). Similarly, in 2004, two viruses were represented about evenly, WDV and BYDV-PAV (75%). The more frequent of the two species was the virus BYDV, with the strain BYDV-PAV predominating. The intensity of viral infection of stand cereals differed during the experimental years, being highest in 2002 when the blight occurred both locally and also on a large-scale. The highest frequency of the disease was in Western and Eastern Slovakia.


Sign in / Sign up

Export Citation Format

Share Document