scholarly journals Drainage basin morphometric analysis and its relationship with altitude of Uttarkashi District

2012 ◽  
Vol 4 (2) ◽  
pp. 167-171
Author(s):  
N. P. Naithani ◽  
Mala Bhatt

The area of investigation lies between Maneri and Gangnani along the Bhagirathi river in the lesser and central Himalayan block of Garhwal Himalayas. The rocks of Garhwal group are represented by quartzites, sericite quartzite’s and talc chlorite schist intruded by metabasics, whereas the Central crystallines are constituted by gneisses, schists, migmatites and amphibolites. For the purpose of drainage basin morphometric analysis 100 third order drainage basins were marked. Drainage basin morphometric parameters of 100 basins were calculated. On the basis of lithology and tectonic setup,the area was divided into three morphogenetic units viz Central crystallines, Thrust zone and Garhwal group. The basins which were situated below 2500 mts are categorized under low altitudes and above 2500 as basins of higher altitudes.The relationship between deainage basinmorphometric parameters and altitude suggest that basins situated at higher altitude have higher value of stream frequency, number of first and second order streams,fine texture and low drainage density.

Author(s):  
Rajnish Yadav ◽  
Mohammad Iqbal Bhat ◽  
Faisul-Ur- Rasool ◽  
Shabir Ahmed Bangroo ◽  
Roheela Ahmad ◽  
...  

Morphometric analysis is of vital importance in any hydrological research and is inevitable in development and management of watershed. Using the watershed as the main unit of morphometric characterization is the most logical choice, as well as geomorphological and hydrological processes take place within the drainage basin. A critical assessment and evaluation of morphometric parameters of Khag micro-watershed was accomplished through measurement of relief, linear and aerial aspects using Geographical Information System (GIS). The watershed boundaries, aspect, slope, digital elevation model (DEM), profile graph of topography, drainage order and drainage density mapswere generated for detailed study of micro-watershed using Shuttle Radar Topographic Mission (SRTM) data. The study area was designated as fourth order basin with the drainage area of 34.32 km2 and shows dendritic drainage pattern. The total length, drainage density and mean bifurcation ratio (Rb) were found to be 38.84 km, 1.13km/km2 and 1.73, respectively. The Khag micro-watershed showed the greater Rb value, which directs a strong structural control in the runoff pattern. A decrease in the stream frequency of flow was also observed with an increase in the order of flow. The shape parameters such as circulatory ratio, elongation ratio, length of over land flow, form factor and drainage texture of Khag micro-watershed were 0.42, 0.56, 0.43 km, 0.24 and 1.66, respectively. The Khag micro-watershed is elongated in shape and dendritic in drainage pattern. This can be attributed to the fact that the lithology and structural controls are more or less uniform. Relative relief and ruggedness number were 0.065 and 2.39 and are likely to subject the micro watershed to maximum soil erosion that demands, instantaneous soil conservation measure to be taken by watershed managers for its stability and sustainability. These studies area advantageous for the planning of rainwater harvesting and the management of the catchment area.


2019 ◽  
pp. 1-10
Author(s):  
Manojkumar Devne ◽  
Nitin Mundhe ◽  
Akshada Kamble ◽  
Ganesh Dhawale

The growing demand and competition for water from domestic, industrial and agricultural sectors reached utmost limit. Drainage basins, catchments, and sub-catchments are the hydrological units ideally suited for planning of conservation of land and water resources. GIS techniques are useful for analysis of morphometric properties of any watershad. Morphometric aspects: linear, relief, and areal aspects of Kolavadi sub-watershed of Upper Nira basin were analyzed using spatial tools and arc-hydro tool in Arc GIS 10.3. The bifurcation ratio (2 to 4.5) indicates structural disturbances and mature topography with higher degree of drainage integration. This watershed shows less elongated shape with low relief, moderate to gentle slope, moderate drainage density and highly prone to soil erosion. Techniques used in study and results are useful for planning and monitoring the sub-watersheds for sustainable development.


Author(s):  
Adelalu, Temitope Gabriel ◽  
Yusuf, Mohammed Bakoji ◽  
Ibrahim Abdullahi ◽  
Idakwo Victor Iko-Ojo

As climate change infiltrate and influence every sphere of the globe, the continuous study of the drainage features and assessment of the drainage basin as a fundamental geomorphic unit in water resources development and management cannot be relegated. This work has considered the analytical description of the physical division of RDCA. The three domains of the morphometric parameters (linear, areal, and relief aspects of the basin) were considered for the analysis.  Remote sensing and GIS techniques were adopted in the analysis of the data using hydrological and surface tool in ArcGIS 10.2. The acquired SRTM DEM was used to delineate the catchment area and major morphometric parameters were estimated. The results show that the basin is elongated with low leminiscate ratio. RDCA is a 7th order drainage basin, with an area of 11,355 km2, having a length of about 164 km2. Value of drainage density indicates moderate runoff potentials. Stream frequency, bifurcation ratio and constant channel maintenance indicate medium permeability and that the basin produces a flatter peak of direct runoff for a longer duration. Channel encroachment, land use and land cover change seems the cause of perennial flooding in the region than change in drainage features. This study provides scientific database for further comprehensive hydrological investigation of RDCA around which Kashimbilla dam is located.


1995 ◽  
Vol 11 ◽  
Author(s):  
A. K. Awasthi ◽  
S. H. Tabatabaei ◽  
Bhawani Singh ◽  
G. S. Mehrotra

Slope movement processes along with other terrain attributes influence surface morphology of an area. Correlation analysis of nineteen morphometric parameters and the landslide areal extent in 26 third order basins in a part of Garhwal region of the Lesser Himalaya, U.P. India, indicates that fraction of landslide area (Ls) in a basin has statistically significant correlation coefficient of about 0.86, 0.84, 0.68 and -0.55 (at 99% confidence level) with drainage texture (DT), stream frequency (SF), drainage density (DD) and basin circularity (BC) respectively. Drainage texture which is the product of stream frequency and drainage density, is one single morphometric parameter in a basin that has in it, the influence of many morphometric parameters which in turn, are reflection of the cumulative effect of elevation, slope, lithology, structural features, vegetation and hydrological condition. Higher the drainage texture, higher is the landslide areal extent. Based on regression analysis, a relationship between fraction of landslide area (Ls) and drainage texture (DT) of third order basin has been worked out which suggests that the third order basins always have some unstable slope faces. With a drainage texture of about 185, almost all the slopes are expected to be unstable. Relatively stable areas are associated with lower values of drainage texture. Circular basins with low relief have lower values of DT and therefore, their slopes are relatively more stable. This identified relationship is found to be useful within the error limit of 25 percent and is, therefore, recommended for use as a first step towards the landslide hazard zonation in similar terrains.


2016 ◽  
Vol 8 (4) ◽  
pp. 9 ◽  
Author(s):  
Akinwumiju A. S. ◽  
Olorunfemi M. O.

This study evaluated some morphometric parameters with a view to assessing the infiltration potential of Osun Drainage Basin (ODB), Southwestern Nigeria. Input data were derived from SPOT DEM using ArcGIS 10.3 platform. ODB has an area extent of 2,208.18 km2, and is drained by 1,560 streams with total length of 2,487.7 km. The Relief Ratio (5.6) suggests that ODB is characterized by topographic high and topographic low. Thus, infiltration potential would be low as surface runoff would have less time to infiltrate before entering the drainage channels. The computed values of Drainage Texture (0.52), Stream Number (1,560), Total Stream Length (2,487.7 m) and Main Stream Length (119 m) indicate that larger percentage of annual rainwater would leave ODB as river discharge. Stream Frequency, Basin Perimeter, Length of Overland Flow and Drainage Density influence Infiltration Number across the basin. Infiltration Number increases with increasing Stream Frequency (r = 0.95) and Drainage Density (r = 0.78); and Length of Overland Flow increases with decreasing Drainage Density (r = -0.83), Stream Frequency (r = -0.51) and Infiltration Number (r = -0.45). The study concluded that basin’s infiltration potential is moderate as suggested by the mean Infiltration Number.


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Alemsha Bogale

AbstractGIS and remote sensing approach is an effective tool to determine the morphological characteristics of the basin. Gilgel Abay watershed is stretched between latitude 10.56° to 11.22° N and longitude 36.44° to 37.03° E which is one major contributing river of Lake Tana which is the source of Blue Nile. The present study addressed linear and areal morphometric aspect of the watershed. The study deals with emphasis on the evolution of morphometric parameters such as stream order, stream length, bifurcation ratio, drainage density, stream frequency, texture ratio, elongation ratio, circularity ratio, and form factor ratio. The morphometric analysis of the basin revealed that Gilgel Abay is firth-order drainage basin with total of 662 drainage network, of which 511 are first order, 111 are second order, 30 are third order, 9 are fourth order, and 1 is fifth-order stream. The total length of stream is longer for first order and decrease with increasing stream order. The mean bifurcation ratio is 5.16 which is greater than the standard range, and it indicates that basin is mountainous and susceptible to flooding. Low drainage density is observed which is 0.6 km−2. It indicates that basin is highly permeable and thick vegetation cover. Areal aspect of the morphometric analysis of the basin revealed that the basin is slightly potential to flooding and soil erosion, indicating that runoff generated from the upland area of the watershed is significantly infiltrated at the gentle downstream part and contributing to groundwater potential. Further studies with the help of GIS and remote sensing with high-resolution remote sensing data integrating with ground control data in the field are more effective to formulate appropriate type of natural resource management system.


Author(s):  
Abhijit M. Zende ◽  
R. NAGRAJAN

The morphometric analysis of study area has been carried out using Arc GIS software. The study area covers 3035 sq.km. The drainage network was delineated using SOI topographical map of no. 47 K – 5, 6, 7, 8, 10, 11, 12, 47 L - 9 on the scale 1:50,000. Morphological characterized of the drainage line as appear in shape ,size, number, order, length, Dd, Sf, Rb, Fs, T, Rc are derived to trace its usefulness for surface development . The present study involves Geographic Information System (GIS) analysis technique to evaluate and compare linear relief and aerial morphometry of Yerala watershed of Krishna River. Yerala watershed is basically 7th order drainage and is mainly dendritic to sub dendritic. Drainage density and texture of the drainage basin is 6.89 km/km2, 18.60 respectively. The drainage frequency of Yerala watersheds is 1.96 where as the bifurcation ratio ranges from 2 to 11. Hence from the study it can be conclude that GIS technique proves to be competent tool in morphometric analysis.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Swati Ghosh ◽  
Ashis Kr. Paul

Abstract Scientists and researchers in ancient and modern times have profoundly applied morphometric analysis to evaluate quantitative description of landforms or drainage basins and large regions. The objective of this study is to enlighten certain features like tectonic control over drainage basin, the hydro-geomorphic characteristics of the drainage system and the geomorphic maturity of terrain of South Andaman Island. After extensive studies, drainage system in this particular island is broadly classified into five major drainage patterns (dendritic, trellis, parallel, radial and centripetal). An attempt has been made here to investigate the in-depth morphometric characteristics of dendritic pattern of a fourth-order watershed. In earlier attempts, researchers have used morphometric analysis to calculate stream ordering, stream length, length ratio and bifurcation ratio as part of linear aspects and drainage density, stream frequency, form factor, circulatory ratio, elongated ratio as part of areal aspects. The present case study has been carried out in remote sensing and geographical information system (GIS) environment. Shuttle Radar Topographic Mission data has been used to prepare the digital elevation model and GIS to evaluate all linear, areal and relief aspects of this small drainage basin in South Andaman Island which was never unearthed till date.


2020 ◽  
Vol 7 ◽  
pp. 127-144
Author(s):  
Sandeep Adhikari

This study attempts to study the morphometric characteristics of the Ghatganga basin by using Geographical information system (GIS). This analysis has shown that the relation of stream order (U) and stream number (Nu) which gives a negative linear pattern that order increases with a decreasing number of stream segment of a particular order. Different morphometric parameters such as stream length (Lu), bifurcation ratio (Rb), drainage density (D), stream frequency (Fs), texture ratio (T), elongation ratio (Re), circularity ratio (Rc), form factor ratio (Rf), relief ratio (Rh) and river profile have revealed the basin has a dendritic pattern of drainage, indicating high relief and steep ground slope with less elongated young and mature landforms in which geological structures don’t have a dominant influence on the basin.


Author(s):  
M. Dhanusree ◽  
G. Bhaskaran

Aims: The paper aims to study about the river basin morphometry namely the physical, linear and aerial parameters for the basin. Study Design: The Study has been carried out with the help of Geospatial techniques and statistical formulas. Place and Duration of Study: Bharathapuzha river basin, Kerala, India between January 2018 to July 2018. Methodology: The Study of River morphometry of Bharathapuzha River basin has been done with the help of SRTM satellite data. The downloaded data has been analyzed with the help of ARC GIS Software. The morphometric analysis has been carried out by dividing the basin into nine watersheds based on Water shed Atlas of India Prepared by Soil and Land Use board of           India. Relief, Linear and areal parameters of the basin is calculated with the help of statistical formulas. Results: Based on the analysis it is noted that there is not much difference in morphometric values except in some watersheds. Watershed number 5A2B5, 5A2B6 and 5A2B7 has highest drainage density, stream frequency, relief, relief ratio, ruggedness number, stream length ratio and lowest bifurcation ratio. These watersheds are characterized by highest surface runoff and erosion. The values of form factor, circulatory ratio and elongation ratio suggests that most of the watersheds are elongated and has high basin relief. The maximum stream order frequency is observed in case of first order streams and then for second order streams. Hence it is noted that there is decrease in stream frequency as stream order increases. Conclusion: The mean bifurcation ratio of the Bharathapuza basin is 1.52 which indicates the whole basin is less effected by structural control. This present study is valuable for the erosion control, watershed management, land and water resource planning and future prospective related to runoff study.


Sign in / Sign up

Export Citation Format

Share Document