scholarly journals Physicochemical properties and biological activity of extracts of dried biomass of callus and suspension cells and in vitro root cultures

2020 ◽  
Vol 50 (3) ◽  
pp. 480-492
Author(s):  
Yong Yang ◽  
Lyudmila Asyakina ◽  
Olga Babich ◽  
Lyubov Dyshluk ◽  
Stanislav Sukhikh ◽  
...  

Introduction. One of the urgent problems of medicine and biology is the use of plant objects as industrial producers of target metabolites in vitro. In vitro cells can be used as pharmaceutical preparations. Study objects and methods. The present research featured medicinal plants that grow in the Siberian Federal district and are a popular source of medicinal raw materials. The physicochemical properties, e.g. total ash content in extracts, the content of heavy metals, the content of organic solvents in the extracts, and the mass loss upon drying was determined by standard methods. The antimicrobial properties of in vitro extracts were determined by the diffusion method and the method based on optical density measurement. The list of opportunistic and pathogenic test strains included the following microorganisms: E. coli ATCC 25922, S. aureus ATCC 25923, P. vulgaris ATCC 63, P. aeruginosa ATCC 9027, and C. albicans EMTC 34. The number of viable cancer cells was determined using the MTT colorimetric method. Results and discussion. The paper describes the physicochemical properties, safety indicators, antioxidant activity, antimicrobial activity, and antitumor properties of extracts of a complex of biologically active substances obtained in vitro from the dried biomass of callus and suspension cell cultures and root cultures. The root extracts proved to have the maximum antimicrobial and cytotoxic properties. They could reduce the survival rate of cancer cells to 24.8–36.8 %. Conclusion. The research featured extracts obtained from the dried biomass of callus and suspension cell cultures and root cultures in vitro of safflower leuzea (Leuzea carthamoides L.), Rhodiola rosea (Rhodiola rosea L.), various sorts of skullcap (Scutellaria baicalensis L., Scutellaria andrachnoides L., Scutellaria galericulata L.), Potentilla alba (Potentilla alba L.) and ginseng (Panax L.). The results showed that the extracts can be used for the production of pharmaceuticals and biologically active additives with antitumor, antimicrobial, and antioxidant properties.

2021 ◽  
Vol 291 ◽  
pp. 02022
Author(s):  
Andrey Kolomietc ◽  
Nadezda Nicolaeva ◽  
Victoria Larina ◽  
Nataliya Chupakhina

Suspension cell cultures allow to save plant material when obtaining biologically active compounds of natural origin. As a result of the studies, optimal parameters were selected to increase the formation of biologically active metabolites in suspension cell cultures of such medicinal plants as Maackia amurensis Rupr., Hyssopus officinalis L. and Saposhnikovia divaricata (Turcz.) Schischk. Medicinal plants are a large group of plants used as raw materials for the production of medicinal and preventive drugs for medical and animal use. The assortment of phytopreparations is constantly expanding due to the increased demand for natural remedies, due to their less aggressive and toxic nature compared to synthetic ones [1]. Cultivation of medicinal plants in the form of isolated cells in vitro is one of the most modern technologies for rapidly obtaining a large biomass of plant material with stable growth features year-round under controlled conditions [2]. It is known that cells in vitro grow faster and have peculiarities of synthesis and accumulation of biologically active substances compared to intact plants [3]. Isolated cells, unlike tissue cells, also have an advantage for their use as a source of active metabolites, since they have the ability to release these compounds into the intercellular space [4]. The goal of this paper was to select parameters for increasing the biosynthetic activity of cultured suspension cultures of medicinal plant cells in vitro by optimizing cultivation conditions and introducing precursors of secondary metabolite biosynthesis into the nutrient media.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 365 ◽  
Author(s):  
Lyudmila Asyakina ◽  
Stanislav Sukhikh ◽  
Svetlana Ivanova ◽  
Alexander Prosekov ◽  
Elena Ulrikh ◽  
...  

The results of the qualitative composition analysis of the dried biomass extracts of in vitro callus, cell suspension, and root cultures show that the main biologically active substances (BAS) in the medicinal plant, Rhodiola rosea, are 6-C-(1-(4-hydroxyphenyl)ethyl)aromadendrin (25 mg, yield 0.21%), 2-(3,7-dihydroxy-2-(2-hydroxypropan-2-yl)-2,3-dihydrobenzofuran-5-yl)-6,7-dihydroxychroman-4-one (23 mg, yield 0.2%), 2-(3,4-dimethoxyphenyl)-5,7-dimethoxychroman-4-one (175 mg, yield 1.5%), 5,7-dihydroxy-2-(4-hydroxy-3-(2-(4-hydroxyphenyl)-4-oxo-4H-chromen-6-yl)phenyl)-4H-chromen-4-one (45 mg, yield 0.5%), 5,6,7,8-tetrahydroxy-4-methoxyflavone (0.35 mg, 0.5%). BAS from the dried biomass extracts of in vitro callus, cell suspension, and root cultures of Rhodiola rosea will be used for the production of pharmaceuticals and dietary supplements with antitumor, antimicrobial, and antioxidant effects.


Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 81
Author(s):  
María Isabel González ◽  
Mario González-Arjona ◽  
Ana Santos-Coquillat ◽  
Javier Vaquero ◽  
Elena Vázquez-Ogando ◽  
...  

The vertiginous increase in the use of extracellular vesicles and especially exosomes for therapeutic applications highlights the necessity of advanced techniques for gaining a deeper knowledge of their pharmacological properties. Herein, we report a novel chemical approach for the robust attachment of commercial fluorescent dyes to the exosome surface with covalent binding. The applicability of the methodology was tested on milk and cancer cell-derived exosomes (from U87 and B16F10 cancer cells). We demonstrated that fluorescent labeling did not modify the original physicochemical properties of exosomes. We tested this nanoprobe in cell cultures and healthy mice to validate its use for in vitro and in vivo applications. We confirmed that these fluorescently labeled exosomes could be successfully visualized with optical imaging.


2021 ◽  
Vol 11 (6) ◽  
pp. 2555
Author(s):  
Lyudmila Asyakina ◽  
Svetlana Ivanova ◽  
Alexander Prosekov ◽  
Lyubov Dyshlyuk ◽  
Evgeny Chupakhin ◽  
...  

This work aims to study the qualitative composition of biologically active substance (BAS) extracts in vitro callus, cell suspension, and root cultures of the medicinal plant Rhaponticum carthamoides. The research methodology is based on high-performance liquid chromatography, and 1H nuclear magnetic resonance (NMR) spectra, to study the qualitative and quantitative analysis of BAS. The results of the qualitative composition analysis of the dried biomass extracts of in vitro callus, cell suspension and root cultures showed that the main biologically active substances in the medicinal plant Rhaponticum carthamoides are 2-deoxy-5,20,26-trihydroxyecdyson (7 mg, yield 0.12%), 5,20,26-trihydroxyecdyson 20,22-acetonide (15 mg, yield 0.25%), 2-deoxy-5,20,26-trihydroxyecdyson 20,22-acetonide (6 mg, yield 0.10%), 20,26-dihydroxyecdyson 20,22-acetonidecdyson 20,22-acetonide (5 mg, yield 0.09%), and ecdyson 20,22-acetonide (6 mg, yield 0.10%). In the future, it is planned to study the antimicrobial, antioxidant, and antitumor activity of BAS of extracts of in vitro callus, cell suspension, and root cultures of the medicinal plant Rhaponticum carthamoides, for the production of pharmaceuticals and dietary supplements with antitumor, antimicrobial and antioxidant effects.


2009 ◽  
Vol 72 (4-5) ◽  
pp. 469-483 ◽  
Author(s):  
Fiorenza Bastianelli ◽  
Alex Costa ◽  
Marco Vescovi ◽  
Enrica D’Apuzzo ◽  
Michela Zottini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document