scholarly journals Influence of Alcoholic and Malolactic Fermentation on the Level of Biogenic Amines in Wine

Author(s):  
Natalia Ageyeva ◽  
Anastasia Shirshova ◽  
Anastasia Tikhonova

Introduction. The concentration of biogenic amines is an important indicator of the safety of food products, especially winemaking. In grape wines, this concentration varies widely depending on the grape variety, its microbiological state, processing technology, the race of yeast and bacteria of malolactic fermentation, conditions of alcoholic and malolactic fermentation, etc. This research is aimed at determining the effect of the production technology of dry white and red wines on the concentration of biogenic amines. Study objects and methods. The mass concentration of biogenic amines was determined by the method of high-performance capillary electrophoresis using a Kapel 105R in laboratory-obtained samples of dry white wine from the Chardonnay grape variety and table dry red wine from the Cabernet-Sauvignon grape variety. Results and discussion. The dry white wine samples revealed high concentrations of tyramine (1.12 mg/dm³), phenylethydamine (0.58 mg/dm³), and histamine (0.57 mg/dm³), while the red wine samples demonstrated tyramine (0.62 mg/dm³), histamine (0.45 mg/dm³), putrescine (0.43 mg/dm³), and cadaverine (0.38 mg/dm³). The white wine samples had optimal pH values (3.2–3.6) with minimal formation of biogenic amines. The red wine samples, especially those obtained by heat treatment, had a lower concentration of biogenic amines, especially volatile biogenic amines, i.e. methylamine and phenylethylamine. The greatest formation of biogenic amines occurred during the acid reduction process: under the effect of enzymes of malolactic bacteria, biogenic amines formed as a result of decarboxylation of amino acids. Conclusion. The technology of production of table dry white and red wines affects the concentration of biogenic amines. To reduce the level of biogenic amines in the finished product, each stage of vinification has to be controlled, especially the stages of fermentation and acid reduction (temperature and pH). The race of yeast and lactic acid bacteria cannot include those that produce biogenic amines or introduce them in minimal quantities.

2006 ◽  
Vol 69 (2) ◽  
pp. 397-404 ◽  
Author(s):  
Á. MARCOBAL ◽  
P. J. MARTÍN-ÁLVAREZ ◽  
M. C. POLO ◽  
R. MUÑOZ ◽  
M. V. MORENO-ARRIBAS

Changes in biogenic amines (histamine, methylamine, ethylamine, tyramine, phenylethylamine, putrescine, and cadaver-ine) were monitored during the industrial manufacture of 55 batches of red wine. The origin of these amines in relation to must, alcoholic fermentation, malolactic fermentation, sulfur dioxide addition, and wine aging and the interactions between amines and their corresponding amino acids and pH were statistically evaluated in samples from the same batches throughout the elaboration process. Some amines can be produced in the grape or the musts (e.g., putrescine, cadaverine, and phenylethylamine) or can be formed by yeast during alcoholic fermentation (e.g., ethylamine and phenylethylamine), although quantitatively only very low concentrations are reached in these stages (less than 3 mg/liter). Malolactic fermentation was the main mechanism of biogenic amine formation, especially of histamine, tyramine, and putrescine. During this stage, the increase in these amines was accompanied by a significant decline in their amino acid precursors. Significant correlations between biogenic amine formation and the disappearance of their corresponding amino acids were observed, which clearly supports the hypothesis that malolactic bacteria are responsible for accumulation of these amines in wines. No increase in the concentration of biogenic amines was observed after SO2 addition and during wine aging, indicating that sulfur dioxide prevents amine formation in subsequent stages.


2019 ◽  
Vol 37 (No. 4) ◽  
pp. 239-245 ◽  
Author(s):  
Leos Uttl ◽  
Kamila Hurkova ◽  
Vladimir Kocourek ◽  
Jana Pulkrabova ◽  
Monika Tomaniova ◽  
...  

In 2008, the European Commission highlighted the risk of wine mislabelling regarding the geographical origin and varietal identification. While analytical methods for the identification of wine by geographical origin exist, a reliable strategy for authentication of wine variety is still missing. Here, we investigate the suitability of the metabolomic fingerprinting of ethyl acetate wine extracts, using ultra-high-performance liquid chromatography coupled to high-resolution tandem mass spectrometry. In total, 43 white wine samples (three varieties) were analysed within our study. The generated data were processed by principal component analysis and then by partial least squares discriminant analysis. The resulting statistical models were validated and assessed according to their R2 (cum) and Q2 (cum) parameters. The most promising models were based on positive ionisation data, enabling successful classification of 92% of wine samples.


OENO One ◽  
1997 ◽  
Vol 31 (2) ◽  
pp. 65 ◽  
Author(s):  
Vincent Gerbaud ◽  
Nadine Gabas ◽  
Jacques Blouin ◽  
Patrice Pellerin ◽  
Michel Moutounet

<p style="text-align: justify;">Potassium hydrogen tartrate (KHT) is a natural compound of wine which crystallizes spontaneously. Whereas crystal occurrence can be considered as a sign of goodness in old and famous vintage wines, it is usually thought of as a serious failure for most consumers, even though it does not alter wine quality. An efficient and cheap process of wine stabilization versus KHT crystallization has to be found yet. An alternate process to physical stabilization of wines may lie in the addition of an inhibitor of KHT crystallization. Bearing this in mind, we have investigated the effect of several polysaccharides and total polyphenols fractions on KHT crystallization through the measurement of crystal appearance time (induction time) with and without any macromolecule.</p><p style="text-align: justify;">Red wines. white wines and KHT supersaturated hydroalcoholic solution exhibit different behaviours versus KHT crystallization, red wines crystallizing less easily than white wines and far less easily th an hydroalcoholic solution. Those differences can be explained by our results. The innate inhibition of red wines is the sum of the inhibiting effects of rhamnogalacturonans (RG-I and RG-II), yeasts mannoproteins present in wine and of total polyphenols. Arabinogalactans show no effect on KHT crystallization whereas rhamnogalacturonans display a peculiar concentration dependent behaviour : crystal appearance is accelerated at low concentration and slowed at high concentration. More strongly observed for RG-1I2 fractions, this feature is confirmed by a theory of crystallization in the presence of an additive. The theory predicts that RG-I has almost no effect on the nucleation phenomenon whereas RG-1I2 enhances this phenomenon. Both RG-l and RG-1I2 inhibit crystal growth by adsorption on crystal growth sites, as contirmed by single crystal growth experiments.</p><p style="text-align: justify;">Red wine tendency to be more difficult to stabilize versus KHT crystallization by cooling than white wine is due to the concentration in RG-II and in total polyphenols : low RG-II content in white wine accelerates crystal appearance whereas high RG-Il content in red wine slows crystal appearance. Thus it intensifies the inhibition due to the high total polyphenol content in red wine.</p><p style="text-align: justify;">Mannoproteins extracted from yeast cell walls inhibit KHT crystallization far more than yeast mannoproteins present in wine. However, their efficiency is reduced as temperature is lowered.</p>


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Shely Salemnia ◽  
Rosalia Garcia-Torres ◽  
Dena Herman ◽  
Claudia Fajardo-Lira

Abstract Objectives Orange wine is essentially white wine that is produced similarly to red wines, with skin-contact during maceration. Various polyphenols found in red wine may be contributing to the observed benefits on heart health. The objective is to identify if grape skin contact gives orange wine similar antioxidant properties as red wine, by comparing total polyphenols and antioxidant capacity of red, white, and orange wines. Methods Fifteen wine samples were analyzed in triplicates (4 red, 8 orange and 3 white wines). A set of orange, red and white wines from the same wineries and vintages were purchased and analyzed. Analysis consisted of total polyphenols, total antioxidant capacity, and color. Total polyphenols were measured using the Folin Ciocalteu method (gallic acid equivalent per liter (GA/L)), total antioxidant capacity was measured using the ORAC method (micromol of Trolox equivalent per mililiter (µmol TE/ml)) and color was measured using a colorimeter (Lab color scale). Results Total polyphenol content in orange wines (1259.2 + 138.9 mg GA/L) was 0.6 times of red wines (2239.4 + 156.9 mg GA/L) and 4.6 times higher than white wines (273.9 + 11.8 mg GA/L). Similarly, the antioxidant capacity of orange wine (12.2 + 1.9 µmol TE/ml) was 0.6 times of red wines (20.9 + 2.7 µmol TE/ml) and 2.3 times higher than white wines (4.9 + 0.9 µmol TE/ml). Differences in total polyphenols and antioxidant capacity between types of wines were significantly different (ANOVA, α = 0.05). Color of orange wines had great variability, ranging from pale to deep orange and confirmed by the wide range of a and b color values (0.3 to 2.9 and 13.3 to 25.5 respectively). Many factors can contribute to this variation, including grape variety, winery, methods of production and storage; only two countries have a legal definition of orange wine or skin-contact white wine, thus adding additional variability. Conclusions This allows for understanding of the characteristics of orange wines, which may have a beneficial effect on heart health and how it compares with other wine styles. Funding Sources California State University, Northridge.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1342 ◽  
Author(s):  
Anna Stój ◽  
Ireneusz Kapusta ◽  
Dorota Domagała

The authentication of grape variety from which wine is produced is necessary for protecting a consumer from adulteration and false labelling. The aim of this study was to analyze phenolic compounds in red monovarietal wines produced from Zweigelt (Vitis vinifera) and Rondo (non-Vitis vinifera) varieties while using the UPLC-PDA-MS/MS method and to assess whether these wines can be classified according to grape variety that is based on chemometric analysis. Fifty-five phenolic compounds belonging to five classes—anthocyanins, flavonols, flavan-3-ols, phenolic acids, and stilbenes—were identified and quantified in Zweigelt and Rondo wines. The wines of the Zweigelt variety were characterized by lower concentrations of phenolic compounds than those of the Rondo variety. Furthermore, wines of the Zweigelt variety contained the highest concentrations of flavan-3-ols, and wines of the Rondo variety—the highest concentrations of anthocyanins. Hierarchical cluster analysis (HCA) revealed that Zweigelt wines and Rondo wines formed two separate groups. The Rondo group was divided into two subgroups, differing in type of malolactic fermentation (spontaneous or induced). Phenolic compounds analysis by means of UPLC-PDA-MS/MS combined with HCA is a useful tool for the classification of red wines that were produced from Zweigelt and Rondo grape varieties, regardless of yeast strain and type of malolactic fermentation.


Foods ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 336 ◽  
Author(s):  
María Luisa Escudero-Gilete ◽  
Dolores Hernanz ◽  
Celia Galán-Lorente ◽  
Francisco J. Heredia ◽  
María José Jara-Palacios

Cooperage byproducts are an important source of phenolic compounds that could be used for wine technology applications. The effects of the addition of two types of oak wood shavings (American, AOW, and Ukrainian, UOW) on the antioxidant activity and color of red wine anthocyanins, in a wine model solution, were evaluated by spectrophotometric and colorimetric analyses. Phenolic compounds from shavings, mainly ellagitannins, were determined by ultra-high-performance liquid chromatography/mass spectrometry (UHPLC/MS). Antioxidant and copigmentation effects varied depending on the type of shavings (AOW and UOW) and the phenolic concentration (100, 400, and 500 mg/L). Phenolic compounds from shavings improved the color characteristics (darker and more bluish color) and the copigmentation effect of red wine anthocyanins, being UOW a better source of copigments than AOW shavings. The best antioxidant activity was found for the 400 and 500 mg/L model solutions for both types of shavings. Results show a winemaking technological application based on the repurposing of cooperage byproducts, which could improve color and antioxidant characteristics of red wines.


LWT ◽  
2016 ◽  
Vol 68 ◽  
pp. 183-189 ◽  
Author(s):  
Karem Henríquez-Aedo ◽  
Daniel Durán ◽  
Apolinaria Garcia ◽  
Martha B. Hengst ◽  
Mario Aranda

Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1789
Author(s):  
Fernanda Cosme ◽  
António Inês ◽  
Beatriz Ferreira ◽  
Davide Silva ◽  
Luís Filipe-Ribeiro ◽  
...  

Aflatoxins B1 and B2 are two highly toxic mycotoxins that have been sometimes found in wines. Currently, no technological solution is available to reduce or eliminate aflatoxins from wines when they are present. Therefore, this work aims to study the efficiency of already approved wine fining agents like activated carbon, potassium caseinate, chitosan, and bentonite for aflatoxins B1 and B2 removal from white and red wines. It was observed that the fining agents’ efficiency in removing aflatoxins was dependent on the wine matrix, being higher in white than in red wine. Bentonite was the most efficient fining agent, removing both aflatoxins (10 μg/L total) from the white wine and 100% of aflatoxin B1 and 82% of aflatoxin B2 from red wine. The impact of bentonite on white wine chromatic characteristics was low (color difference, ΔE* = 1.35). For red wine, bentonite addition caused a higher impact on wine’ chromatic characteristics (ΔE* = 4.80) due to the decrease in total anthocyanins, although this decrease was only 1.5 points of color intensity. Considering the high efficiency of bentonite in aflatoxins B1 and B2 removal and despite the impact on red wine color, bentonite is a very good technological solution for aflatoxin removal in white and red wines.


Sign in / Sign up

Export Citation Format

Share Document