scholarly journals Methane production from anaerobic co-digestion of primary sludge and crop residues under mesophilic condition

2020 ◽  
Vol 1 (1) ◽  
pp. 97-105
Author(s):  
Mahmoud A. Elsayed ◽  
Ramadan Hassany ◽  
Mohamed F. Soliman
Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2483 ◽  
Author(s):  
Agnieszka Garlicka ◽  
Monika Zubrowska-Sudol ◽  
Katarzyna Umiejewska ◽  
Otton Roubinek ◽  
Jacek Palige ◽  
...  

The main purpose of this study was the assessment of the possibility of increasing the production of biogas through the pre-treatment of thickened excess sludge (TES) by means of the hydrodynamic cavitation (HC) conducted at different levels of energy density (EL) i.e., 70, 140 and 210 kJ/L. The experiments were performed on a pilot scale, and a mixture of thickened primary sludge (TPS) and TES was used as digester feed. The results documented that an important parameter determining the possibility of obtaining an enhanced methane production is the value of energy input in the HC process. This parameter determines the changes occurring in sludge as a result of disintegration (i.e., sludge floc deagglomeration, lysis of cells, re-flocculation process and the related release of compounds susceptible to biodegradation from sludge flocs). The maximum increase in methane yield (MY) of 152% was obtained for EL = 140 kJ/L. In this case, HC mainly caused sludge floc deagglomeration. An increase in MY was also recorded when TES was subject to the disintegration process at EL = 210 kJ/L. However, it was 4.3 times lower than that observed for EL = 140 kJ/L. Pre-treatment of TES at EL = 70 kJ/L did not contribute to an increase in methane production.


2020 ◽  
Vol 12 (8) ◽  
pp. 3441 ◽  
Author(s):  
Saba Seyedi ◽  
Kaushik Venkiteshwaran ◽  
Nicholas Benn ◽  
Daniel Zitomer

Pyrolysis can convert wastewater solids into useful byproducts such as pyrolysis gas (py-gas), bio-oil and biochar. However, pyrolysis also yields organic-rich aqueous pyrolysis liquid (APL), which presently has no beneficial use. Autocatalytic pyrolysis can beneficially increase py-gas production and eliminate bio-oil; however, APL is still generated. This study aimed to utilize APLs derived from conventional and autocatalytic wastewater solids pyrolysis as co-digestates to produce biomethane. Results showed that digester performance was not reduced when conventional APL was co-digested. Despite having a lower phenolics concentration, catalyzed APL inhibited methane production more than conventional APL and microbial community analysis revealed a concomitant reduction in acetoclastic Methanosaeta. Long-term (over 500-day) co-digestion of conventional APL with synthetic primary sludge was performed at different APL organic loading rates (OLRs). Acclimation resulted in a doubling of biomass tolerance to APL toxicity. However, at OLRs higher than 0.10 gCOD/Lr-d (COD = chemical oxygen demand, Lr = liter of reactor), methane production was inhibited. In conclusion, conventional APL COD was stoichiometrically converted to methane in quasi steady state, semi-continuous fed co-digesters at OLR ≤ 0.10 gCOD/Lr-d. Undetected organic compounds in the catalyzed APL ostensibly inhibited anaerobic digestion. Strategies such as use of specific acclimated inoculum, addition of biochar to the digester and pretreatment to remove toxicants may improve future APL digestion efforts.


Environments ◽  
2020 ◽  
Vol 7 (6) ◽  
pp. 42 ◽  
Author(s):  
Moshe Habagil ◽  
Alexander Keucken ◽  
Ilona Sárvári Horváth

The majority of municipal Wastewater Treatment Plants (WWTPs) in Sweden produce biogas from sewage sludge. In order to increase the methane production, co-digestion of internal sludge with Organic Fraction of Municipal Solid Waste (OFMSW) might be feasible in the future. The objective of this study was therefore to find a beneficial solution for the utilization of OFMSW at the WWTP in Varberg, Sweden. The effects of co-digesting primary sludge (PS) and OFMSW collected in the municipality, in different mixing ratios, were investigated by semi-continuous anaerobic digestion assays. Furthermore, the effects of the addition of a commercial trace elements mixture solution (CTES), available on the market in Sweden, were also examined. Co-digestion of OFMSW and PS resulted in specific methane yields of 404, 392, and 375 NmL CH4/g volatile solids (VS), obtained during semi-continuous operations of 301, 357 and 385 days, for the reactors fed with OMFSW:PS ratio of 4:1, 3:1, and 1:1, and at maximum organic loading rates (OLRs) achieved of 4.0, 4.0 and 5.0 gVS/L/d, respectively. Furthermore, mono-digestion of OFMSW failed already at OLR of 1.0 gVS/L/d, however, an OLR of 4.0 gVS/L/d could be achieved with addition of 14 µL/g VS Commercial Trace Element Solutions (CTES) leading to 363 mL CH4/g VS methane production. These experiments were running during 411 days. Hence, higher process efficiency was obtained when using co-digestion of OFMSW and PS compared to that of OFMSW in mono-digestion. Co-digestion is a more feasible option where a balanced Carbon/Nitrogen (C/N) ratio and nutrient supply can be maintained.


2016 ◽  
Vol 117 ◽  
pp. 538-547 ◽  
Author(s):  
Mahmoud Elsayed ◽  
Yves Andres ◽  
Walid Blel ◽  
Ali Gad ◽  
Abdelkader Ahmed

2018 ◽  
Vol 351 ◽  
pp. 1159-1165 ◽  
Author(s):  
Wei Wei ◽  
Zhengqing Cai ◽  
Jie Fu ◽  
Guo-Jun Xie ◽  
Ang Li ◽  
...  

2013 ◽  
Vol 67 (5) ◽  
pp. 989-995 ◽  
Author(s):  
J. Pagés-Díaz ◽  
I. Sárvári-Horváth ◽  
J. Pérez-Olmo ◽  
I. Pereda-Reyes

A co-digestion process was evaluated when mixing different ratios of agro-industrial residues, i.e. bovine slaughterhouse waste (SB); cow manure (M); various crop residues (VC); and municipal solid waste (MSW) by anaerobic batch digestion under thermophilic conditions (55 °C). A selected study case at mesophilic condition (37 °C) was also investigated. The performance of the co-digestion was evaluated by kinetics (k0). The best kinetic results were obtained under thermophilic operation when a mixture of 22% w/w SB, 22% w/w M, 45% w/w VC and 11% w/w MSW was co-digested, which showed a proper combination of high values in rsCH4 and k0 (0.066 Nm3CH4/kgVS*d, 0.336 d−1) during the anaerobic process. The effect of temperature on methane yield (YCH4), specific methane rate (rsCH4) and k0 was also analyzed for a specific study case; there a mixture of 25% w/w of SB, 37.5% w/w of M, 37.5% of VC and 0% of MSW was used. Response variables were severely affected by mesophilic conditions, diminishing to at least 45% of the thermophilic values obtained for a similar mixture. The effect of temperature suggested that thermophilic conditions are suitable to treat these residues.


Sign in / Sign up

Export Citation Format

Share Document