scholarly journals EFFECT OF HARVEST DATE AND FOLIAR APPLICATION WITH SOME MICRONUTRIENTS ON SUGAR BEET

2009 ◽  
Vol 34 (2) ◽  
pp. 1065-1076
Author(s):  
E. H. H. Selim ◽  
M. A. E. Abdou ◽  
H. M. Sarhan ◽  
Dalia I. H. El-Geddawy
Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 370
Author(s):  
Arkadiusz Artyszak ◽  
Dariusz Gozdowski ◽  
Alicja Siuda

Water shortage and drought are a growing problem in Europe. Therefore, effective methods for limiting its effects are necessary. At the same time, the “field to fork” strategy adopted by the European Commission aims to achieve a significant reduction in the use of plant protection products and fertilizers in the European Union. In an experiment conducted in 2018–2020, the effect of the method of foliar fertilization containing silicon and potassium on the yield and technological quality of sugar beet roots was assessed. The fertilizer was used in seven combinations, differing in the number and time of application. The best results were obtained by treating plants during drought stress. The better soil moisture for the plants, the smaller the pure sugar yield increase was observed. It is difficult to clearly state which combination of silicon and potassium foliar application is optimal, as their effects do not differ greatly.


Sugar Tech ◽  
2021 ◽  
Author(s):  
Arkadiusz Artyszak ◽  
Małgorzata Kondracka ◽  
Dariusz Gozdowski ◽  
Alicja Siuda ◽  
Magda Litwińczuk-Bis

AbstractThe effect of marine calcite, a mixture of ortho- and polysilicic acid as well as orthosilicic acid applied as a foliar spray on the chemical composition of sugar beet leaves in the critical phase of nutrient supply (beginning of July) but also leaves and roots during harvest time in 2015–2016, was studied. The content of silicon in the leaves ranged from 1.24 to 2.36 g kg−1 d.m. at the beginning of July, 3.85–5.34 g kg−1 d.m. during harvest and 2.91–4.20 g kg−1 d.m. in the roots. The foliar application of silicon caused a significant increase in the content of magnesium and calcium in leaves (in July) as compared to the control. The sugar beet consumes approx. 75 kg Si ha−1, which is almost 3.5 times more than P and 20% more than Mg thus proving its importance for its species. About 70% of the silicon taken up by sugar beet is stored in roots and 30% in leaves. The pure sugar yield is most favorably influenced by two- and threefold foliar application of the product containing silicon in the form of orthosilicic acid stabilized with choline, and a threefold mixture of ortho- and polysilicic acid. The increase in the pure sugar yield is not the result of a change in the chemical composition of sugar beet plants, but their more efficient functioning after foliar application of silicon under stress conditions caused by water shortage.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maria C. Della Lucia ◽  
Giovanni Bertoldo ◽  
Chiara Broccanello ◽  
Laura Maretto ◽  
Samathmika Ravi ◽  
...  

The present study aimed to explore the effects of foliar application of a leonardite-based product on sugar beet (Beta vulgaris L.) plants grown in the field. The approach concerned the evaluation of the community compositional structure of plant endophytic bacteria through a metabarcoding approach, the expression level of a gene panel related to hormonal metabolism and signaling, and the main sugar beet productivity traits. Results indicated that plants treated with leonardite (dosage of 2,000 ml ha–1, dilution 1:125, 4 mg C l–1) compared with untreated ones had a significant increase (p < 0.05) in (i) the abundance of Oxalicibacterium spp., recognized to be an endophyte bacterial genus with plant growth-promoting activity; (ii) the expression level of LAX2 gene, coding for auxin transport proteins; and (iii) sugar yield. This study represents a step forward to advance our understanding of the changes induced by leonardite-based biostimulant in sugar beet.


2011 ◽  
pp. 123-129
Author(s):  
Stevan Radivojevic ◽  
Jasna Grbic ◽  
Rada Jevtic-Mucibabic ◽  
Vlada Filipovic

The results assessed from sugar beet microtrials at Kljajicevo (Serbia) in 2010 harvested at three harvest periods demonstrated that the average root yield tended to increase from the first to the third harvest period. The average increase in root yield between the first and the second harvest period was 29.06 t ha-1 or 32.76%, between the second and the third period 14.77 t ha-1 or 12.54% and between the first and the third period 43.83 t ha-1 or 49.40%. In average, the content of sugar in root showed a similar tendency. The highest increase in this parameter was registered between the second and the third harvest period and it amounted to 1.00% abs. Other indicators of sugar beet processing quality showed a slow increase or slight decrease depending on the harvest date, probably due to plentiful rainfall in September. Mean granulated sugar yield had an increasing tendency: 3.413 t ha-1 or 32.82% between the first and the second harvest period, 2.820 t ha-1 or 20.42% between the second and the third and 6.233 t ha-1 or 59.94% between the first and the third period.


Weed Science ◽  
1996 ◽  
Vol 44 (3) ◽  
pp. 609-614 ◽  
Author(s):  
Corné Kempenaar ◽  
Petra J. F. M. Horsten ◽  
Piet C. Scheepens

Control of common lambsquarters by the use ofAscochyta caldinaas a postemergence mycoherbicide was studied in corn and sugar beet, in 1992 or 1993. The weed was planted at determined positions in the crops. Plots were treated with suspensions ofA. caulinaspores, and wetness duration's were varied to create different levels of disease development. Application ofA. caulinaresulted in necrosis development on, and mortality of common lambsquarters. Average severities of leaf necrosis 1 wk after treatment ranged from 0.01 to 0.75. Average proportions of dead plants 3 wk after treatment ranged from 0.00 to 0.65. Necrosis development and mortality were affected by wetness duration in two experiments. Sublethally diseased plants showed reduced growth. Maximum dry matter was affected by crop and by necrosis development. Numbers of fruits per plant showed a positive, almost linear relationship with plant dry matter weight. Seed weight was less affected by necrosis than number of fruits per plant. Competitiveness of common lambsquarters was reduced after infection byA. caulina.Crop dry matter weight showed a positive relationship with the level of common lambsquarters control. In corn, yield reduction by competition was prevented by application of A.caulina, but not in sugar beet.


1987 ◽  
Vol 23 (1) ◽  
pp. 99-103
Author(s):  
R. S. Narang ◽  
B. S. Bains

SUMMARYResults of a two-year field study show that even under hot northern Indian conditions, sugar-beet planting dates can be advanced to 20 September to permit an early harvest from mid-March onwards. Seeding the crop on the northern side of east-west ridges gave root yields of 45–50 t ha−1 with a sucrose content of 12–14%. Transplanting gave the highest tonnage but led to a high incidence of branched tap roots. For timely planting during October, direct seeding in north–south rows was also satisfactory. Such staggered seeding and harvest schedules could help extend the milling period to 90–100 days as against the present 45–50 days.


2019 ◽  
Vol 20 (15) ◽  
pp. 3777 ◽  
Author(s):  
Seyed Abdollah Hosseini ◽  
Elise Réthoré ◽  
Sylvain Pluchon ◽  
Nusrat Ali ◽  
Bastien Billiot ◽  
...  

Numerous studies have demonstrated the potential of sugar beet to lose the final sugar yield under water limiting regime. Ample evidences have revealed the important role of mineral nutrition in increasing plant tolerance to abiotic stresses. Despite the vital role of calcium (Ca2+) in plant growth and development, as well as in stress responses as an intracellular messenger, its role in alleviating drought stress in sugar beet has been rarely addressed. Here, an attempt was undertaken to investigate whether, and to what extent, foliar application of Ca2+ confers drought stress tolerance in sugar beet plants exposed to drought stress. To achieve this goal, sugar beet plants, which were grown in a high throughput phenotyping platform, were sprayed with Ca2+ and submitted to drought stress. The results showed that foliar application of Ca2+ increased the level of magnesium and silicon in the leaves, promoted plant growth, height, and leaf coverage area as well as chlorophyll level. Ca2+, in turn, increased the carbohydrate levels in leaves under drought condition and regulated transcriptionally the genes involved in sucrose transport (BvSUC3 and BvTST3). Subsequently, Ca2+ enhanced the root biomass and simultaneously led to induction of root (BvSUC3 and BvTST1) sucrose transporters which eventually supported the loading of more sucrose into beetroot under drought stress. Metabolite analysis revealed that the beneficial effect of Ca2+ in tolerance to drought induced-oxidative stress is most likely mediated by higher glutathione pools, increased levels of free polyamine putrescine (Put), and lower levels of amino acid gamma-aminobutyric acid (GABA). Taken together, this work demonstrates that foliar application of Ca2+ is a promising fertilization strategy to improve mineral nutrition efficiency, sugar metabolism, redox state, and thus, drought stress tolerance.


1961 ◽  
Vol 29 (3) ◽  
pp. 376-378
Author(s):  
Shingo ITO ◽  
Hiroshi TAKENAGA ◽  
Toshiyuki MIURA ◽  
Nobuichi MOROOKA

Sign in / Sign up

Export Citation Format

Share Document