scholarly journals EFFECT OF INTERCROPPING PATTERNS ON FORAGE YIELD AND LAND USE EFFICIENCY OF SOME SUMMER FODDER CROPS

2017 ◽  
Vol 44 (6) ◽  
pp. 2007-2020
Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 107
Author(s):  
Heba S. A. Salama ◽  
Ali I. Nawar ◽  
Hassan E. Khalil

Intercropping maize and forage cowpea is a widely proposed strategy to improve land use efficiency, and maximize the economic value of the farming system, especially in developing countries with restricted resources. The current study was carried out during the successive summers of 2020 and 2021 in Northern Egypt. The main objective was to evaluate the effect of three N schedules (NS1, NS2, NS3), when three different maize–cowpea intercropping patterns (IP1, IP2, IP3) were applied, on the grain yield of maize, forage yield and quality of forage cowpea. In addition, yield gain and land use efficiency were evaluated using the land equivalent ratio (LER) and dry matter equivalent ratio (DMER) indices. Results revealed that the intercropping patterns that provided wider spacings for the component crops and reduced the competition between them, mainly IP3, resulted in the best performances for the two crops. This was clear for maize ear and grain yields, 100-grain weight and harvest index, in addition to cowpea fresh and dry forage yields, crude protein and non-fiber carbohydrates of the three cuts. Regarding the applied N schedules, NS1 which included the application of a N starter dose with sowing proved to be the most efficient schedule that led to the best performance for both crops. Maize produced 9.07 t ha−1 grain yield under IP3 and NS1. In addition, the application of IP3 resulted in the highest significant cowpea dry forage yield (DFY), with the highest crude protein (CP) content. The DFY of cuts 1, 2, and 3 amounted to 1.27, 0.45, and 0.24 t ha−1, while the CP content for the three respective cuts reached 159.49, 157.96, and 148.91 g kg−1. Nonetheless, NS1 produced a reasonable amount of DFY with high CP content. It is recommended to follow the third proposed intercropping pattern (IP3) and to include a nitrogen starter dose (NS1) in the fertilization scheme to ensure highest productivity from the intercropped maize and forage cowpea.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 715
Author(s):  
Yingkai Tang ◽  
Kun Wang ◽  
Xuanming Ji ◽  
He Xu ◽  
Yangqing Xiao

Rapid urbanization has provided a strong impetus for the economic growth of China, but it has also caused many problems such as inefficient urban land use and environmental pollution. With the popularization of the concept of green and sustainable development, the Environmental-Social-Governance (ESG) assessment concept is widely accepted. The government and residents are paying more and more attention to environmental issues in urban development, and environmental protection has formed an important part of urban development. In this context, this study takes 26 cities in the Yangtze River Delta as examples to build an evaluation system for urban land-use efficiency under green development orientation. The evaluation system takes into account the inputs of land, capital, labor, and energy factors in the process of urban development. Based on emphasizing economic output, the social benefits and undesired outputs brought about by urban development are taken into account. This paper measures urban land use efficiency by the super-efficiency SBM model, and on this basis, analyses the spatial-temporal evolution characteristics of urban land-use efficiency. Further, this paper measures urban land use efficiency without considering undesired outputs and compares the two evaluation methods. Again, the comparison illustrates the rationality of urban land use efficiency evaluation system under green development orientation.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 303
Author(s):  
Xinhai Lu ◽  
Yifeng Tang ◽  
Shangan Ke

The construction and operation of high-speed rail (HSR) has become an important policy for China to achieve efficiency and fairness and promote high-quality economic growth. HSR promotes the flow of production factors such as labor and capital and affects economic growth, and may further affect urban land use efficiency (ULUE). To explore the impact of HSR on ULUE, this paper uses panel data of 284 cities in China from 2005 to 2018, and constructs Propensity Score Matching-Differences in Differences model to evaluate the effect of HSR on ULUE. The result of entire China demonstrates that the HSR could significantly improves the ULUE. Meanwhile, this paper also considers the heterogeneity of results caused by geographic location, urban levels and scales. It demonstrates that the HSR has a significantly positive effect on ULUE of Eastern, Central China, and large-sized cities. However, in Western China, in medium-sized, and small-sized cities, the impact of HSR on ULUE is not significant. This paper concludes that construction and operation of HSR should be linked to urban development planning and land use planning. Meanwhile, the cities with different geographical locations and scales should take advantage of HSR to improve ULUE and promote urban coordinated development.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 657
Author(s):  
Aiping Wang ◽  
Weifen Lin ◽  
Bei Liu ◽  
Hui Wang ◽  
Hong Xu

Frontier research primarily focuses on the effect of urban development models on land use efficiency, while ignoring the effect of new-type urban development on the green land use efficiency. Accordingly, this paper employs a super efficiency slacks-based measure (super-SBM) model with undesirable outputs to measure the green land use efficiency based on panel data from 152 prefecture-level cities for the period 2004–2017. We construct a difference-in-differences (DID) model in this paper to test the impact of smart city construction on the green utilization efficiency of urban land and its transmission mechanism. The results showed that: (1) The smart city construction significantly improved the green utilization efficiency of urban land, increasing the general efficiency by 15%. (2) There is significant city-size heterogeneity in the effect of smart city construction on improving green utilization efficiency of urban land. The policy effect is more obvious in mega cities and above than in very-large-sized cities. (3) The city-feature heterogeneity results reveal that, in cities with a higher level of human capital, financial development, and information infrastructure, the effectiveness of smart city construction in improving the green utilization efficiency of urban land are more obvious, and in cities with a higher level of financial development, the effects of the urban policy were more optimal. (4) The smart city construction promotes the green utilization efficiency of urban land through by the information industry development and the regional innovation capabilities.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Wei Chen ◽  
Rui He ◽  
Qun Wu

With the rapid and unbalanced development of industry, a large amount of cultivated land is converted into industrial land with lower efficiency. The existing research is extensively concerned with industrial land use and industrial development in isolation, but little attention has been paid to the relationship between them. To help address this gap, the paper creates a new efficiency measure method for industrial land use combining Subvector Data Envelope Analysis (DEA) with spatial analysis approach. The proposed model has been verified by using the industrial land use data of 30 Chinese provinces from 2001 to 2013. The spatial autocorrelation relationship between industrial development and industrial land use efficiency is explored. Furthermore, this paper examines the effects of industrial development on industrial land use efficiency by spatial panel data model. The results indicate that the industrial land use efficiency and the industrial development level in the provinces of eastern region are higher than those of the western region. The spatial distribution of industrial land use efficiency shows remarkable positive spatial autocorrelation. However, the level of industrial development has obvious negative spatial autocorrelation since 2009. The improvement of industrial development has a significant positive impact on the industrial land use efficiency.


2015 ◽  
Vol 21 (5) ◽  
pp. 747-758 ◽  
Author(s):  
Hannah H. E. van Zanten ◽  
Herman Mollenhorst ◽  
Cindy W. Klootwijk ◽  
Corina E. van Middelaar ◽  
Imke J. M. de Boer

2018 ◽  
Vol 10 (7) ◽  
pp. 2174 ◽  
Author(s):  
Xiaofeng Zhao ◽  
Lin Zhang ◽  
Xianjin Huang ◽  
Yuntai Zhao ◽  
Yunpeng Zhang

Sign in / Sign up

Export Citation Format

Share Document