scholarly journals Removal of emerging persistent organic pollutants (Em-POPs) model compounds from water using a natural porous material functionalized with graphene-based products

2020 ◽  
Vol 3 (1) ◽  
pp. 416-427
Author(s):  
Donald Boehm ◽  
Alice Lecus ◽  
Hai-Feng Zhang ◽  
David Garman ◽  
Marcia R. Silva

Abstract This study focuses on the removal of three model compounds, classified as emerging persistent organic pollutants (Em-POPs), from water using a modified version of natural Australian zeolite. Following a series of subsequent treatments and vacuum deposition of graphene oxide (GO), both chemical and physical properties of the adsorbent were characterized. The GO-coated zeolite was tested for the removal of methylene blue (MB), disperse blue 26 (DB26), and sodium fluorescein (NaFn). Results show excellent removal capability for MB and DB26 dyes and decent removal for NaFn when compared to commercially available products such as granular activated carbon. Regeneration of the adsorbent showed virtually no loss in adsorptive performance after two cycles, with MB and DB26.

2020 ◽  
Vol 7 (9) ◽  
pp. 2669-2680 ◽  
Author(s):  
Raphaela Allgayer ◽  
Nariman Yousefi ◽  
Nathalie Tufenkji

A graphene oxide sponge with hierarchical porosity outperforms Norit GAC for removal of methylene blue.


1997 ◽  
Vol 15 (1) ◽  
pp. 59-68 ◽  
Author(s):  
Th. El-Nabarawy ◽  
M.R. Mostafa ◽  
A.M. Youssef

Non-activated carbon ‘A’, physically-activated carbons P1–P4, zinc chloride-activated carbons Z1–Z4 and potassium sulphide-activated carbons K1–K4 were prepared from Maghara coal (Sinai, Egypt). The surface areas of these carbons were determined by investigating the adsorption of carbon dioxide at 298 K and of nitrogen at 77 K. The decolourization powers of the carbons were determined from methylene blue adsorption at 308 K. The adsorption of methanol, benzene, n-hexane, n-octane and α-pinene at 308 K was also determined using equilibrium and flow techniques. The removal of ammonia and phenol from water was investigated on some selected samples. The activated carbons showed high capacities towards the removal of organic pollutants from water and from gas streams via adsorption. Their capacity towards a particular pollutant depends on the method of activation and is related to the textural and/or the chemistry of the carbon surface.


2020 ◽  
Vol 9 (1) ◽  
pp. 237-247
Author(s):  
Shah Hussain ◽  
Hani S. H. Mohammed Ali ◽  
Shahid Ali Khan ◽  
Aliya Farooq ◽  
Najla bint Saud Al-Saud ◽  
...  

AbstractStabilization of zero-valent CuNi nanoparticles (NPs) supported on Cicer arietenum (CP) is reported here for the reduction and removal of persistent organic pollutants. The functional groups and interactions of NPs with the CP were determined by ATR-FTIR. The crystallinity, morphology, and the elemental composition of the samples were determined through powder XRD, FESEM, and EDS techniques, respectively. The XRD spectrum displayed a sharp crystalline peak at 43.9 for CuNi. The Cu and Ni zero-valent NPs displayed a peak at almost the same region, and thus, both the peaks are merged and appeared as a single peak. The chemical reduction/degradation of eight model pollutants, viz., 2-nitrophenol (ONP), 3-nitrophenol (MNP), 4-nitrophenol (PNP), 2,4-dinitrophenol (DNP), methyl orange (MO), congo red (CR), methylene blue (MB), and rhodamine B (RB) were carried out in the presence of NaBH4. The kapp value of 0.1 mM 4NP was highest which was 1.8 × 10−1 min−1 while the slowest rate was observed for CR and RB with kapp 5.5 × 10−3 and 5.4 × 10−3 min−1 respectively. This article helps in the removal of toxic organic pollutants through green supported NPs.


Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 974 ◽  
Author(s):  
Albert Serrà ◽  
Elvira Gómez ◽  
Laetitia Philippe

Biomimetic/bioinspired engineering and sulfidation processes are effective strategies for improving the visible light-driven photocatalytic performance of ZnO photocatalysts. A facile electrodeposition process in high oxygen-flux conditions was used to synthesize well-defined fractal micro/nanoferns, consequently increasing the photocatalyst’s light-trapping capability and the accessible active surface. Next, a simple sulfidation process was used to form a thin layer of ZnS, producing ZnO@ZnS core@shell micro/nanoferns, thereby tuning the optoelectronic properties and extending the photoresponse to the visible region. The ZnO@ZnS micro/nanoferns exhibited clear superiority over other ZnO photocatalysts in the photooxidation of persistent organic pollutants (POPs) and the photoreduction of Cr(VI). Their excellent photocatalytic performance allowed the photodegradation under UV-filtered sunlight of nearly 97% of methylene blue after 60 min; the mineralization of >98% of a mixture of methylene blue, 4-nitrophenol, and rhodamine-B after 210 min; and the removal of nearly 65% of Cr(VI) after 180 min. In addition, the ZnO@ZnS micro/nanoferns demonstrated a good ability to decontaminate an inorganic-organic bipollutant system, with promising potential to leverage synergistic effects. Finally, these micro/nanoferns presented great recyclability and reusability for both photooxidation and photoremediation processes. These findings support that sulfidation and biomimetic engineering can be a superior route for designing efficient sunlight-driven ZnO-photocatalysts for water decontamination.


2018 ◽  
Vol 2 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Tee L. Guidotti

On 16 October 1996, a malfunction at the Swan Hills Special Waste Treatment Center (SHSWTC) in Alberta, Canada, released an undetermined quantity of persistent organic pollutants (POPs) into the atmosphere, including polychlorinated biphenyls, dioxins, and furans. The circumstances of exposure are detailed in Part 1, Background and Policy Issues. An ecologically based, staged health risk assessment was conducted in two parts with two levels of government as sponsors. The first, called the Swan Hills Study, is described in Part 2. A subsequent evaluation, described here in Part 3, was undertaken by Health Canada and focused exclusively on Aboriginal residents in three communities living near the lake, downwind, and downstream of the SHSWTC of the area. It was designed to isolate effects on members living a more traditional Aboriginal lifestyle. Aboriginal communities place great cultural emphasis on access to traditional lands and derive both cultural and health benefits from “country foods” such as venison (deer meat) and local fish. The suspicion of contamination of traditional lands and the food supply made risk management exceptionally difficult in this situation. The conclusion of both the Swan Hills and Lesser Slave Lake studies was that although POPs had entered the ecosystem, no effect could be demonstrated on human exposure or health outcome attributable to the incident. However, the value of this case study is in the detail of the process, not the ultimate dimensions of risk. The findings of the Lesser Slave Lake Study have not been published previously and are incomplete.


Sign in / Sign up

Export Citation Format

Share Document