scholarly journals Fuzzy rules based model for solute dispersion in an open channel dead zone

2002 ◽  
Vol 4 (1) ◽  
pp. 39-51
Author(s):  
Helen Kettle ◽  
Keith Beven ◽  
Barry Hankin

A method has been developed to estimate turbulent dispersion based on fuzzy rules that use local transverse velocity shears to predict turbulent velocity fluctuations. Turbulence measurements of flow around a rectangular dead zone in an open channel laboratory flume were conducted using an acoustic Doppler velocimeter (ADV) probe. The mean velocity and turbulence characteristics in and around the shear zone were analysed for different flows and geometries. Relationships between the mean transverse velocity shear and the turbulent velocity fluctuations are encapsulated in a simple set of fuzzy rules. The rules are included in a steady-state hybrid finite-volume advection–diffusion scheme to simulate the mixing of hot water in an open-channel dead zone. The fuzzy rules produce a fuzzy number for the magnitude of the average velocity fluctuation at each cell boundary. These are then combined within the finite-volume model using the single-value simulation method to give a fuzzy number for the temperature in each cell. The results are compared with laboratory flume data and a computational fluid dynamics (CFD) simulation from PHOENICS. The fuzzy model compares favourably with the experiment data and offers an alternative to traditional CFD models.

2002 ◽  
Vol 4 (1) ◽  
pp. 53-62
Author(s):  
Helen Kettle ◽  
Barry Hankin ◽  
Keith Beven

Fuzzy rules are used to model solute dispersion in a river dead zone, such that the turbulent diffusion is determined by a fuzzy inference system which relates the local mean velocity shear to the longitudinal velocity fluctuations. A finite-volume hybrid scheme is applied to a non-orthogonal grid for which a mean velocity field is produced using the computational fluid dynamics (CFD) package Telemac 2D. At each cell face fuzzy rules predict a fuzzy number, and these numbers reflect the possible magnitudes of turbulent velocity fluctuations. These are input to the finite-volume model using a single-value simulation method. Multiple model runs produce a fuzzy number for the solute concentration in each cell. The results of the fuzzy model are then compared with data collected in a field experiment with rhodamine dye in the River Severn.


1994 ◽  
Vol 116 (3) ◽  
pp. 631-642 ◽  
Author(s):  
M. Matovic ◽  
S. Oka ◽  
F. Durst

Laser-Doppler measurements of axial mean velocities and the corresponding rms values of turbulent velocity fluctuations are reported for premixed, axisymmetric, acetylene flames together with the probability density distributions of the turbulent velocity fluctuations. All this information provides an insight into the structure of the flow field. Characteristic zones of the flow field are defined that show common features for all acetylene flames studied by the authors. These features are discussed in the paper and are suggested to characterize, in general, interesting parts of the flames.


RBRH ◽  
2017 ◽  
Vol 22 (0) ◽  
Author(s):  
Arlan Scortegagna Almeida ◽  
Vladimir Caramori Borges de Souza

ABSTRACT Hydrometric measurements undertaken in channels with high velocities are conditioned to the particularities of the flow, which is often characterized by instantaneous fluctuations and disturbances on the free surface. In such cases, the uncertainties associated with velocity fluctuations exceed the precision offered by the instruments that are employed in conventional techniques. A reasonable accuracy of the results is therefore sufficient to accomplish the objective of the measurements. The use of devices based on Pitot’s principle in fast open-channel flows could be an effective alternative to conventional velocity meters. This study aimed to develop a Pitot tube in its simplest configuration and evaluate its performance in a laboratory channel at velocities ranging from 0.2 to 2.0 m/s. The uncertainties in the static and total head readings were propagated to the output velocities, showing that the device built has the potential for measurements over 1.2 m/s, but it is not recommended for low velocities (<0.6 m/s). The results were compared to those taken using an Acoustic Doppler Velocimeter (ADV). The instantaneous velocity readings indicated uncertainties of the same order of magnitude in both instruments. The differences between the mean velocities measured by the Pitot tube and the ADV were restricted to an agreement range of 15%, which is expected to be gradually reduced with further increase in flow velocity. The results showed the similar performances of both devices regarding the higher velocity estimates. Therefore, velocity meters should be developed to employ Pitot devices as an alternative method in high-velocity open-channel flows.


Author(s):  
Donggun Son ◽  
Seung Jeon ◽  
Haecheon Choi

In the present study, we apply proportional-integral-differential (PID) feedback controls to flow over a circular cylinder for suppression of vortex shedding in the wake. The transverse velocity at a centerline location in the wake is measured and used for the feedback control. The actuation (blowing/suction) is provided to the flow at the upper and lower slots on the cylinder surface near the separation point based on the P, PI or PD control. The sensing location is varied from 1d to 4d from the center of the cylinder. Given each sensing location, the optimal proportional gain in the sense of minimizing the sensing velocity fluctuations is obtained for the P control. The P control significantly reduces the fluctuations of the sensing velocity at certain sensing positions that is called the effective sensing region. The additions of I and D controls to the P control increase the control performance and broaden the effective sensing location. The P, PI and PD controls significantly reduce the velocity fluctuations and attenuate vortex shedding in the wake, resulting in the reductions in the mean drag and lift fluctuations.


Author(s):  
Donggun Son ◽  
Seung Jeon ◽  
Haecheon Choi

In the present study, we apply proportional (P), proportional–integral (PI) and proportional–differential (PD) feedback controls to flow over a circular cylinder at Re =60 and 100 for suppression of vortex shedding in the wake. The transverse velocity at a centreline location in the wake is measured and used for the feedback control. The actuation (blowing/suction) is provided to the flow at the upper and lower slots on the cylinder surface near the separation point based on the P, PI or PD control. The sensing location is varied from 1 d to 4 d from the centre of the cylinder. Given each sensing location, the optimal proportional gain in the sense of minimizing the sensing velocity fluctuations is obtained for the P control. The addition of I and D controls to the P control certainly increases the control performance and broadens the effective sensing location. The P, PI and PD controls successfully reduce the velocity fluctuations at sensing locations and attenuate vortex shedding in the wake, resulting in reductions in the mean drag and lift fluctuations. Finally, P controls with phase shift are constructed from successful PI controls. These phase-shifted P controls also reduce the strength of vortex shedding, but their results are not as good as those from the corresponding PI controls.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1718
Author(s):  
Hasan Zobeyer ◽  
Abul B. M. Baki ◽  
Saika Nowshin Nowrin

The flow hydrodynamics around a single cylinder differ significantly from the flow fields around two cylinders in a tandem or side-by-side arrangement. In this study, the experimental results on the mean and turbulence characteristics of flow generated by a pair of cylinders placed in tandem in an open-channel flume are presented. An acoustic Doppler velocimeter (ADV) was used to measure the instantaneous three-dimensional velocity components. This study investigated the effect of cylinder spacing at 3D, 6D, and 9D (center to center) distances on the mean and turbulent flow profiles and the distribution of near-bed shear stress behind the tandem cylinders in the plane of symmetry, where D is the cylinder diameter. The results revealed that the downstream cylinder influenced the flow development between cylinders (i.e., midstream) with 3D, 6D, and 9D spacing. However, the downstream cylinder controlled the flow recirculation length midstream for the 3D distance and showed zero interruption in the 6D and 9D distances. The peak of the turbulent metrics generally occurred near the end of the recirculation zone in all scenarios.


2014 ◽  
Vol 905 ◽  
pp. 369-373
Author(s):  
Choo Tai Ho ◽  
Yoon Hyeon Cheol ◽  
Yun Gwan Seon ◽  
Noh Hyun Suk ◽  
Bae Chang Yeon

The estimation of a river discharge by using a mean velocity equation is very convenient and rational. Nevertheless, a research on an equation calculating a mean velocity in a river was not entirely satisfactory after the development of Chezy and Mannings formulas which are uniform equations. In this paper, accordingly, the mean velocity in unsteady flow conditions which are shown loop form properties was estimated by using a new mean velocity formula derived from Chius 2-D velocity formula. The results showed that the proposed method was more accurate in estimating discharge, when compared with the conventional formulas.


2011 ◽  
Vol 689 ◽  
pp. 97-128 ◽  
Author(s):  
K. Gudmundsson ◽  
Tim Colonius

AbstractPrevious work has shown that aspects of the evolution of large-scale structures, particularly in forced and transitional mixing layers and jets, can be described by linear and nonlinear stability theories. However, questions persist as to the choice of the basic (steady) flow field to perturb, and the extent to which disturbances in natural (unforced), initially turbulent jets may be modelled with the theory. For unforced jets, identification is made difficult by the lack of a phase reference that would permit a portion of the signal associated with the instability wave to be isolated from other, uncorrelated fluctuations. In this paper, we investigate the extent to which pressure and velocity fluctuations in subsonic, turbulent round jets can be described aslinearperturbations to the mean flow field. The disturbances are expanded about the experimentally measured jet mean flow field, and evolved using linear parabolized stability equations (PSE) that account, in an approximate way, for the weakly non-parallel jet mean flow field. We utilize data from an extensive microphone array that measures pressure fluctuations just outside the jet shear layer to show that, up to an unknown initial disturbance spectrum, the phase, wavelength, and amplitude envelope of convecting wavepackets agree well with PSE solutions at frequencies and azimuthal wavenumbers that can be accurately measured with the array. We next apply the proper orthogonal decomposition to near-field velocity fluctuations measured with particle image velocimetry, and show that the structure of the most energetic modes is also similar to eigenfunctions from the linear theory. Importantly, the amplitudes of the modes inferred from the velocity fluctuations are in reasonable agreement with those identified from the microphone array. The results therefore suggest that, to predict, with reasonable accuracy, the evolution of the largest-scale structures that comprise the most energetic portion of the turbulent spectrum of natural jets, nonlinear effects need only be indirectly accounted for by considering perturbations to the mean turbulent flow field, while neglecting any non-zero frequency disturbance interactions.


Sign in / Sign up

Export Citation Format

Share Document