scholarly journals Forecast-based analysis for regional water supply and demand relationship by hybrid Markov chain models: a case study of Urumqi, China

2016 ◽  
Vol 18 (5) ◽  
pp. 905-918 ◽  
Author(s):  
B. Wang ◽  
L. Liu ◽  
G. H. Huang ◽  
W. Li ◽  
Y. L. Xie

A clear understanding of regional water supply and demand trend is crucial for proper water resources planning and management in water-deficient areas, especially for Northwest China. In this study, three hybrid stochastic models (Markov chain model, unbiased Grey-Markov model and Markov model based on quadratic programming) were developed separately for predicating the available water resources, water demand, and water utilization structure in Urumqi. The novelty of this study arises from the following aspects: (1) compared with other models, the developed models would provide ideal forecasting results with small samples and poor information; (2) this study synthetically took into account water supply and demand, water utilization structure trend; (3) the prediction results were expressed as interval values for reducing the forecasting risk when carrying out water resources system planning and operational decisions. Analysis of water supply and demand in Urumqi under different reuse ratios was also conducted based on the forecasting results. The results would help managers and policy-makers to have a clear understanding of regional water supply and demand trend as well as the water utilization structure in the future.

Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1085 ◽  
Author(s):  
Boyang Sun ◽  
Xiaohua Yang

In order to comprehensively evaluate the water resources carrying capacity in Xiong’an New Area, a system dynamics (SD) model was established to evaluate the regional water resources carrying capacity, for which several scenarios were designed: the original development scenario, the accelerated industrialization scenario, the environmental governance scenario, and the optimization development scenario. The results show that, compared with the original development scenario, the water resources carrying capacity in Xiong’an New Area can be improved in other scenarios, but a water supply and demand gap will be generated due to the lack of groundwater overdraft and a water transfer project. In 2026, under the accelerated industrialization scenario, the population carrying capacity will be 2.652 million, and the water supply and demand gap will be 1.13 × 108 m3; under the environmental governance scenario, the population carrying capacity will be 2.36 million, and the water supply and demand gap will be 0.44 × 108 m3; under the optimal development scenario, the population carrying capacity will be 2.654 million, and since the supply of water resources will be greater than the demand, there will not be a gap between supply and demand, making it the most feasible scenario to effectively alleviate the tension between industry restructuring, environmental management, and water resources development and utilization. The findings of this study can provide reference and decision support for optimizing regional water resources allocation and enhancing water resources carrying capacity in Xiong’an New Area.


Author(s):  
Hang Li ◽  
Xiao-Ning Qu ◽  
Jie Tao ◽  
Chang-Hong Hu ◽  
Qi-Ting Zuo

Abstract China is actively exploring water resources management considering ecological priorities. The Shaying River Basin (Henan Section) serves as an important grain production base in China. However, conflicts for water between humans and the environment are becoming increasingly prominent. The present study analyzed the optimal allocation of water while considering ecological priorities in the Shaying River Basin (Henan Section). The ecological water demand was calculated by the Tennant and the representative station methods; then, based on the predicted water supply and demand in 2030, an optimal allocation model was established, giving priority to meeting ecological objectives while including social and comprehensive economic benefit objectives. After solving the model, the optimal results of three established schemes were obtained. This revealed that scheme 1 and scheme 2 failed to satisfy the water demand of the study area in 2030 by only the current conditions and strengthening water conservation, respectively. Scheme 3 was the best scheme, which could balance the water supply and demand by adding new water supply based on strengthening water conservation and maximizing the benefits. Therefore, the actual water allocation in 2030 is forecast to be 7.514 billion (7.514 × 109) m3. This study could help basin water management departments deal with water use and supply.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Chongli Di ◽  
Xiaohua Yang

The relationship between water resources supply and demand is very complex and exhibits nonlinear characteristics, which leads to fewer models that can adequately manage the dynamic evolution process of the water resources supply-demand system. In this paper, we propose a new four-dimensional dynamical model to simulate the internal dynamic evolution process and predict future trends of water supply and demand. At the beginning, a new four-dimensional dynamical model with uncertain parameters is established. Then, the gray code hybrid accelerating genetic algorithm (GHAGA) is adopted to identify the unknown parameters of the system based on the statistic data (1998–2009). Finally, the dynamical analysis of the system is further studied by Lyapunov-exponent, phase portraits, and Lyapunov exponent theory. Numerical simulation results demonstrate that the proposed water resources supply-demand system is in a steady state and is suitable for simulating the dynamical characteristics of a complex water supply and demand system. According to the trends of the water supply and demand of several nonlinear simulation cases, the corresponding measures can be proposed to improve the steady development of the water resources supply-demand system.


2018 ◽  
Vol 246 ◽  
pp. 01006
Author(s):  
Jigang Ma ◽  
Haofang Wang ◽  
Libin Zhao ◽  
Song Wei

Water resources optimal regulation is an important means to mitigate the shortage of water resources and promote social and economic sustainable development in regions or watershed. With the rapid development of urban population and industrial and agricultural production in recent years, the shortage of water is becoming more and more serious in Jiaodong area. The four regions with serious water shortage including Weifang, Qingdao, Yantai and Weihai in Jiaodong area are the typical research areas. In combination with the water transfer project of Yellow river to Qingdao and the south-to-north water transfer project, the water diversion is carried out to alleviate the contradiction between water supply and demand of Jiaodong area. The year of 2014 deemed as the base year and the years of 2020 and 2025 are the planning years. Based on the supply and demand analysis of water resources, an optimal regulation model is built with the minimum total water shortage considering the constraints of water supply capacity of project, water distribution capacity and minimum water supply of bleeds and so on. The optimal regulation schemes are obtained by solution model using MATLAB programming. The results show that water shortage rate of the four cities decreases significantly in annual regulation. For different planning years, guarantee rate of 50%, 75% and 95%,the total water shortage rate will be reduced by 15.35%、15.75% and 16.85% respectively in 2020, and in 2025the total water shortage rate will be reduced by 13.27%、13.26% and 14.19% respectively. Therefore the water resources optimal regulation of inter-basin water transfer project can effectively mitigate water scarcity and the contradiction between water supply and demand in Jiaodong area.


Water Policy ◽  
2006 ◽  
Vol 8 (2) ◽  
pp. 97-110 ◽  
Author(s):  
Can Wang ◽  
Camilla Dunham Whitehead ◽  
Jining Chen ◽  
Xiaomin Liu ◽  
Junying Chu

Beijing is facing the considerable challenge of water shortage, as it is just able to meet current water demand in a year with average precipitation and a shortfall between water supply and demand is estimated to be around 1.8 billion[109] cubic meters (BCM) by 2010. Aiming to find the solution to such a severe challenge, this paper investigates Beijing's current and future water resources availability and water-use configurations, as well as past and current effort on both areas of water supply and demand. The analysis shows a continuously growing demand for water and an aggravating deficit of traditionally available water resources. The paper concludes that it is necessary to establish well-structured water-use data and employ more advanced forecasting methods if sound future decisions regarding water balance are expected to be made. In order to realize Beijing Municipality's full urban water conservation potential, it is suggested that a comprehensive and integrated long-term conservation program be implemented, which is technically feasible and economically justified, to conserve water consistently for many years.


Author(s):  
Abdulaziz A. Alhassan ◽  
◽  
Alyssa McCluskey ◽  
Anas Alfaris ◽  
Kenneth Strzepek ◽  
...  

2012 ◽  
Vol 58 (4) ◽  
pp. 41-48
Author(s):  
Jan Thomas ◽  
Miroslav Kyncl ◽  
Silvie Langarová

Abstract Periods of drought represent a serious problem in the management of water resources. Currently used climatic models assume the onset of major climatic changes and periods of drought. Irrespective of whether the forecasts will be fulfilled or not, it is essential to prepare measures to ensure the supply of drinking water in dry periods. This paper deals with the preparation of water balances for the areas of the Odra and Morava River basins and the prediction of relationships between water supply and water demand in the given area.


Sign in / Sign up

Export Citation Format

Share Document