scholarly journals Deriving optimal operation of reservoir proposing improved artificial bee colony algorithm: standard and constrained versions

2019 ◽  
Vol 22 (2) ◽  
pp. 263-280 ◽  
Author(s):  
F. Soghrati ◽  
R. Moeini

Abstract In this paper, one of the newest meta-heuristic algorithms, named artificial bee colony (ABC) algorithm, is used to solve the single-reservoir operation optimization problem. The simple and hydropower reservoir operation optimization problems of Dez reservoir, in southern Iran, have been solved here over 60, 240, and 480 monthly operation time periods considering two different decision variables. In addition, to improve the performance of this algorithm, two improved artificial bee colony algorithms have been proposed and these problems have been solved using them. Furthermore, in order to improve the performance of proposed algorithms to solve large-scale problems, two constrained versions of these algorithms have been proposed, in which in these algorithms the problem constraints have been explicitly satisfied. Comparison of the results shows that using the proposed algorithm leads to better results with low computational costs in comparison with other available methods such as genetic algorithm (GA), standard and improved particle swarm optimization (IPSO) algorithm, honey-bees mating optimization (HBMO) algorithm, ant colony optimization algorithm (ACOA), and gravitational search algorithm (GSA). Therefore, the proposed algorithms are capable algorithms to solve large reservoir operation optimization problems.

2019 ◽  
Vol 2 (3) ◽  
pp. 508-517
Author(s):  
FerdaNur Arıcı ◽  
Ersin Kaya

Optimization is a process to search the most suitable solution for a problem within an acceptable time interval. The algorithms that solve the optimization problems are called as optimization algorithms. In the literature, there are many optimization algorithms with different characteristics. The optimization algorithms can exhibit different behaviors depending on the size, characteristics and complexity of the optimization problem. In this study, six well-known population based optimization algorithms (artificial algae algorithm - AAA, artificial bee colony algorithm - ABC, differential evolution algorithm - DE, genetic algorithm - GA, gravitational search algorithm - GSA and particle swarm optimization - PSO) were used. These six algorithms were performed on the CEC’17 test functions. According to the experimental results, the algorithms were compared and performances of the algorithms were evaluated.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Vartika Paliwal ◽  
Aniruddha D. Ghare ◽  
Ashwini B. Mirajkar ◽  
Neeraj Dhanraj Bokde ◽  
Zaher Mundher Yaseen

Based on the current water crisis scenario, effective water resources management can play an essential role. Reservoir operation optimization is part of water resources management. Reservoir operation optimization is difficult as it involves a large number of variables and constraints to achieve this goal. The present study aims at exploring the performance of recently developed heuristic algorithms—Rao algorithms as applied to the reservoir operation studies for the first time. Rao algorithms are metaphor-less algorithms that require only basic parameters—population size and function evaluations. In the present study, Rao algorithms have been applied to two case studies: discrete four-reservoir operation system problem and continuous four-reservoir operation system problem (benchmark problems) for the assessment of their performance vis-à-vis other algorithms from the literature. The results showed that the Rao-1 algorithm provided the optimal solution with the least function evaluations when compared to Rao-2, Rao-3, and other algorithms applied in the past to the same benchmark problem. Consequently, the Rao-1 model is found to be superior to these approaches by taking less computational time. Hence, the Rao-1 algorithm can be considered suitable for application to reservoir operation optimization problems.


2013 ◽  
Vol 4 (4) ◽  
pp. 23-45 ◽  
Author(s):  
B. S. P. Mishra ◽  
S. Dehuri ◽  
G.-N. Wang

Nowadays computers are used to solve a variety and multitude of complex problems facing in every sphere of peoples’ life. However, many of the problems are intractable in nature exact algorithm might need centuries to manage with formidable challenges. In such cases heuristic or in a broader sense meta-heuristic algorithms that find an approximate solution but have acceptable time and space complexity play indispensable role. In this article, the authors present a state-of-the-art review on meta-heuristic algorithm popularly known as artificial bee colony (ABC) inspired by honey bees. Moreover, the ABC algorithm for solving single and multi-objective optimization problems have been studied. A few potential application areas of ABC are highlighted as an end note of this article.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1211
Author(s):  
Ivona Brajević

The artificial bee colony (ABC) algorithm is a prominent swarm intelligence technique due to its simple structure and effective performance. However, the ABC algorithm has a slow convergence rate when it is used to solve complex optimization problems since its solution search equation is more of an exploration than exploitation operator. This paper presents an improved ABC algorithm for solving integer programming and minimax problems. The proposed approach employs a modified ABC search operator, which exploits the useful information of the current best solution in the onlooker phase with the intention of improving its exploitation tendency. Furthermore, the shuffle mutation operator is applied to the created solutions in both bee phases to help the search achieve a better balance between the global exploration and local exploitation abilities and to provide a valuable convergence speed. The experimental results, obtained by testing on seven integer programming problems and ten minimax problems, show that the overall performance of the proposed approach is superior to the ABC. Additionally, it obtains competitive results compared with other state-of-the-art algorithms.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Li Mao ◽  
Yu Mao ◽  
Changxi Zhou ◽  
Chaofeng Li ◽  
Xiao Wei ◽  
...  

Artificial bee colony (ABC) algorithm has good performance in discovering the optimal solutions to difficult optimization problems, but it has weak local search ability and easily plunges into local optimum. In this paper, we introduce the chemotactic behavior of Bacterial Foraging Optimization into employed bees and adopt the principle of moving the particles toward the best solutions in the particle swarm optimization to improve the global search ability of onlooker bees and gain a hybrid artificial bee colony (HABC) algorithm. To obtain a global optimal solution efficiently, we make HABC algorithm converge rapidly in the early stages of the search process, and the search range contracts dynamically during the late stages. Our experimental results on 16 benchmark functions of CEC 2014 show that HABC achieves significant improvement at accuracy and convergence rate, compared with the standard ABC, best-so-far ABC, directed ABC, Gaussian ABC, improved ABC, and memetic ABC algorithms.


Author(s):  
Prativa Agarwalla ◽  
Sumitra Mukhopadhyay

Pathway information for cancer detection helps to find co-regulated gene groups whose collective expression is strongly associated with cancer development. In this paper, a collaborative multi-swarm binary particle swarm optimization (MS-BPSO) based gene selection technique is proposed that outperforms to identify the pathway marker genes. We have compared our proposed method with various statistical and pathway based gene selection techniques for different popular cancer datasets as well as a detailed comparative study is illustrated using different meta-heuristic algorithms like binary coded particle swarm optimization (BPSO), binary coded differential evolution (BDE), binary coded artificial bee colony (BABC) and genetic algorithm (GA). Experimental results show that the proposed MS-BPSO based method performs significantly better and the improved multi swarm concept generates a good subset of pathway markers which provides more effective insight to the gene-disease association with high accuracy and reliability.


Author(s):  
Premalatha Kandhasamy ◽  
Balamurugan R ◽  
Kannimuthu S

In recent years, nature-inspired algorithms have been popular due to the fact that many real-world optimization problems are increasingly large, complex and dynamic. By reasons of the size and complexity of the problems, it is necessary to develop an optimization method whose efficiency is measured by finding the near optimal solution within a reasonable amount of time. A black hole is an object that has enough masses in a small enough volume that its gravitational force is strong enough to prevent light or anything else from escaping. Stellar mass Black hole Optimization (SBO) is a novel optimization algorithm inspired from the property of the gravity's relentless pull of black holes which are presented in the Universe. In this paper SBO algorithm is tested on benchmark optimization test functions and compared with the Cuckoo Search, Particle Swarm Optimization and Artificial Bee Colony systems. The experiment results show that the SBO outperforms the existing methods.


Sign in / Sign up

Export Citation Format

Share Document