An assessment of long-term trends in hydrologic components and implications for water levels in Lake Superior

2009 ◽  
Vol 40 (6) ◽  
pp. 564-579 ◽  
Author(s):  
Homayoun Motiee ◽  
Edward McBean

The combination of climate change and natural periodicities in meteorological variables are demonstrating significant impacts on the water resources of Lake Superior within the Laurentian Great Lakes system of North America. Statistical analyses of long-term records are used to demonstrate how changes over time may be interpreted very differently, depending upon the timeframe over which the analyses are made. Non-linear regression modelling shows that, while increasing trends in overland and overlake precipitation, flows and runoff occurred during the first decades of the twentieth century, very different trends are apparent for the period 1970–2005. For this latter period, increasing rates of air overlake temperature and lake evaporation are occurring but all other parameters are demonstrating decreasing trends. The result is a decline in water levels in Lake Superior at the rate of approximately 1 cm per year over the last 35 years. The results are used to show that to avoid decreasing water levels in Lake Superior, the discharge through St Mary's River must be decreased to approximately one-half the long-term annual average, the results of which will have dramatic implications for ships' cargo levels and hydroelectric energy generation.

2011 ◽  
Vol 24 (7) ◽  
pp. 1913-1921 ◽  
Author(s):  
Mateus da Silva Teixeira ◽  
Prakki Satyamurty

Abstract A new approach to define heavy and extreme rainfall events based on cluster analysis and area-average rainfall series is presented. The annual frequency of the heavy and extreme rainfall events is obtained for the southeastern and southern Brazil regions. In the 1960–2004 period, 510 (98) and 466 (77) heavy (extreme) rainfall events are identified in the two regions. Monthly distributions of the events closely follow the monthly climatological rainfall in the two regions. In both regions, annual heavy and extreme rainfall event frequencies present increasing trends in the 45-yr period. However, only in southern Brazil is the trend statistically significant. Although longer time series are necessary to ensure the existence of long-term trends, the positive trends are somewhat alarming since they indicate that climate changes, in terms of rainfall regimes, are possibly under way in Brazil.


2019 ◽  
Vol 76 (5) ◽  
pp. 831-846 ◽  
Author(s):  
C.J. Watras ◽  
D. Grande ◽  
A.W. Latzka ◽  
L.S. Tate

Atmospheric deposition is the principal source of mercury (Hg) to remote northern landscapes, but its fate depends on multiple factors and internal feedbacks. Here we document long-term trends and cycles of Hg in the air, precipitation, surface water, and fish of northern Wisconsin that span the past three decades, and we investigate relationships to atmospheric processes and other variables, especially the regional water cycle. Consistent with declining emission inventories, there was evidence of declining trends in these time series, but the time series for Hg in some lakes and most fish were dominated by a near-decadal oscillation that tracked the regional oscillation of water levels. Concentrations of important solutes (SO4, dissolved organic carbon) and the acid–base status of lake water also tracked water levels in ways that cannot be attributed to simple dilution or concentration. The explanatory mechanism is analogous to the “reservoir effect” wherein littoral sediments are periodically exposed and reflooded, altering the internal cycles of sulfur, carbon, and mercury. These climatically driven, near-decadal oscillations confound short or sparse time series and complicate relationships among Hg emissions, deposition, and bioaccumulation.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1498 ◽  
Author(s):  
Solomon Mulugeta ◽  
Clifford Fedler ◽  
Mekonen Ayana

With climate change prevailing around the world, understanding the changes in long-term annual and seasonal rainfall at local scales is very important in planning for required adaptation measures. This is especially true for areas such as the Awash River basin where there is very high dependence on rain- fed agriculture characterized by frequent droughts and subsequent famines. The aim of the study is to analyze long-term trends of annual and seasonal rainfall in the Awash River Basin, Ethiopia. Monthly rainfall data extracted from Climatic Research Unit (CRU 4.01) dataset for 54 grid points representing the entire basin were aggregated to find the respective areal annual and seasonal rainfall time series for the entire basin and its seven sub-basins. The Mann-Kendall (MK) test and Sen Slope estimator were applied to the time series for detecting the trends and for estimating the rate of change, respectively. The Statistical software package R version 3.5.2 was used for data extraction, data analyses, and plotting. Geographic information system (GIS) package was also used for grid making, site selection, and mapping. The results showed that no significant trend (at α = 0.05) was identified in annual rainfall in all sub-basins and over the entire basin in the period (1902 to 2016). However, the results for seasonal rainfall are mixed across the study areas. The summer rainfall (June through September) showed significant decreasing trend (at α ≤ 0.1) over five of the seven sub-basins at a rate varying from 4 to 7.4 mm per decade but it showed no trend over the two sub-basins. The autumn rainfall (October through January) showed no significant trends over four of the seven sub-basins but showed increasing trends over three sub-basins at a rate varying from 2 to 5 mm per decade. The winter rainfall (February through May) showed no significant trends over four sub-basins but showed significant increasing trends (at α ≤ 0.1) over three sub-basins at a rate varying from 0.6 to 2.7 mm per decade. At the basin level, the summer rainfall showed a significant decreasing trend (at α = 0.05) while the autumn and winter rainfall showed no significant trends. In addition, shift in some amount of summer rainfall to winter and autumn season was noticed. It is evident that climate change has shown pronounced effects on the trends and patterns of seasonal rainfall. Thus, the study contribute to better understanding of climate change in the basin and the information from the study can be used in planning for adaptation measures against a changing climate.


2018 ◽  
Author(s):  
Tao Xian ◽  
Cameron R. Homeyer

Abstract. Accurate depictions of the tropopause and its changes are important for studies such as stratosphere-troposphere exchange and climate change.Here, the fidelity of primary lapse-rate tropopause altitudes and double tropopause frequencies in four modern reanalyses (ERA-Interim, JRA-55, MERRA-2, and CFSR) is examined using global radiosonde observations. In addition, long-term trends (1981–2015) in these tropopause properties are diagnosed in both the reanalyses and radiosondes. It is found that ERA-Interim, JRA-55, and CFSR reproduce observed tropopause altitudes with little bias and error comparable to the model vertical resolution, while MERRA-2 tropopause altitudes are biased 500–600 m high. All reanalyses underestimate the double tropopause frequency (up to 30 % lower than observed), with the largest biases found in JRA-55 and the smallest in CFSR. The underestimates in double tropopause frequency are primarily attributed to the coarse vertical resolution of the reanalyses. Significant increasing trends in both tropopause altitude (40–120 m per decade) and double tropopause frequency (≥ 3 % per decade) were found in both the radiosonde observations and reanalyses over the 35-year analysis period. ERA-Interim, JRA-55, and MERRA-2 broadly reproduce the patterns and signs of observed significant trends, while CFSR is inconsistent with the remaining datasets. These trends were diagnosed in both the native Eulerian coordinate system of the reanalyses and in a relative latitude coordinate system where the tropopause break (the discontinuity in tropopause altitude between the tropics and extratropics) was used as the reference latitude in each hemisphere. The tropopause break-relative coordinate facilitates the evaluation of tropopause behavior within the tropical and extratropical reservoirs and revealed significant differences in trend estimates compared to the traditional Eulerian analysis. Notably, increasing tropopause altitude trends were found to be of greater magnitude in tropopause break-relative coordinates and increasing double tropopause frequency trends were found to occur primarily poleward of the tropopause break in each hemisphere.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 538 ◽  
Author(s):  
Gaohua Ji ◽  
Karl Havens

We recently documented that during times of extreme shallow depth, there are severe effects on the water quality of one of the largest shallow lakes in the southeastern USA—Lake Apopka. During those times, total phosphorus (TP), total nitrogen (TN), chlorophyll-a (Chl-a) and toxic cyanobacteria blooms increase, and Secchi transparency (SD) declines. The lake recovers when water levels rise in subsequent years. In this paper, we determined whether extreme shallow depth events, particularly when they re-occur frequently, can stop the long-term recovery of a shallow eutrophic lake undergoing nutrient reduction programs. Apopka is an ideal location for this case study because the State of Florida has spent over 200 million USD in order to reduce the inputs of P to the lake, to build large filter marshes to treat the water, and to remove large quantities of benthivorous fish that contribute to internal P loading. We obtained data from 1985 to 2018, a period that had relatively stable water levels for nearly 15 years, and then three successive periods of extreme shallow depth, and we examined the long-term trends in TP, TN, Chl-a, and SD. There were significant decreasing trends in all of these water quality variables, and even though water quality deteriorated during periods of extreme shallow depth, and reduced the slope of the long-term trends, it did not stop the recovery. However, in the future, if climate change leads to more frequent shallow depth events, which in lakes such as Apopka, result in the concentration of water and nutrients, it is unclear whether the resilience we document here will continue, vs. the lake not responding to further nutrient input reductions.


2020 ◽  
Vol 24 (5) ◽  
pp. 2593-2608 ◽  
Author(s):  
Benjamin M. Kraemer ◽  
Anton Seimon ◽  
Rita Adrian ◽  
Peter B. McIntyre

Abstract. Lakes provide many important benefits to society, including drinking water, flood attenuation, nutrition, and recreation. Anthropogenic environmental changes may affect these benefits by altering lake water levels. However, background climate oscillations such as the El Niño–Southern Oscillation and the North Atlantic Oscillation can obscure long-term trends in water levels, creating uncertainty over the strength and ubiquity of anthropogenic effects on lakes. Here we account for the effects of background climate variation and test for long-term (1992–2019) trends in water levels in 200 globally distributed large lakes using satellite altimetry data. The median percentage of water level variation associated with background climate variation was 58 %, with an additional 10 % explained by seasonal variation and 25 % by the long-term trend. The relative influence of specific axes of background climate variation on water levels varied substantially across and within regions. After removing the effects of background climate variation on water levels, long-term water level trend estimates were lower (median: +0.8 cm yr−1) than calculated from raw water level data (median: +1.2 cm yr−1). However, the trends became more statistically significant in 86 % of lakes after removing the effects of background climate variation (the median p value of trends changed from 0.16 to 0.02). Thus, robust tests for long-term trends in lake water levels which may or may not be anthropogenic will require prior isolation and removal of the effects of background climate variation. Our findings suggest that background climate variation often masks long-term trends in environmental variables but can be accounted for through more comprehensive statistical analyses.


2018 ◽  
Vol 10 (9) ◽  
pp. 3330 ◽  
Author(s):  
Iván Hernández-Paniagua ◽  
Rodrigo Lopez-Farias ◽  
José Piña-Mondragón ◽  
Juan Pichardo-Corpus ◽  
Olivia Delgadillo-Ruiz ◽  
...  

Here, we present an assessment of long-term trends in the O3 weekend effect (WE) occurrences and spread within the Mexico City (MCMA), Guadalajara (GMA), and Monterrey (MMA) metropolitan areas, which are the three largest metropolitan areas (MAs) of Mexico and concentrate around 33% of the total population in the country. Daytime averages and peak differences in O3 concentrations from weekdays to weekends were used as a proxy of WE occurrence. All MAs exhibited the occurrence of WE in all years at least in one monitoring site. Substantial differences in O3 daytime averages and peaks from weekdays to weekends have decreased over time in all MAs, and since 1998 and 2013 for the MCMA and GMA, respectively, higher O3 levels during weekends are typical during most of the year. The largest variations in the O3 WE were observed at downwind and urban core sites of the MCMA and GMA. Significant increasing trends (p < 0.05) in the O3 WE magnitude were observed for Sundays at all sites within the MCMA, with trends in annual averages ranging between 0.33 and 1.29 ppb O3 yr−1. Within the GMA, for Sundays, fewer sites exhibited increasing trends in the WE occurrence and at lower growth rates (0.32 and 0.48 ppb yr−1, p < 0.1) than within the MCMA, while within the MMA no apparent trends were observed in marked contrast with the MCMA and GMA. Our findings suggest that policies implemented have been successful in controlling weekday ground-level O3 within the MCMA and GMA, but further actions must be introduced to control the increases in the O3 WE magnitude and spread.


2016 ◽  
Vol 8 (1) ◽  
pp. 78-88
Author(s):  
Erika Bouchard ◽  
Zhiming Qi

Long-term trends in air temperature and precipitation under climate change were analyzed for two meteorological stations on the Island of Montreal: McGill (1872–1986) and Pierre-Elliott-Trudeau (P-E-T, formerly Dorval) Airport (1942–2014). A linear trendline analysis, the Mann–Kendall (MK) test and the two-sample Kolmogorov–Smirnov (KS) test were conducted to assess specific climate trends. On a 100-year basis, temperature increased 1.88°C (34%) and 1.18°C (19%) at the McGill and P-E-T Airport sites, respectively, while annual rainfall increased 23.9 mm y−1 (2.3%) and 138.8 mm y−1 (15%) over the same period. The frequency of 50% (every other year) and 95% (every year) annual maximum daily rainfall events showed decreasing trends for the McGill station, but increasing trends for the P-E-T Airport station. Growing degree-days and growing season length are prone to being influenced by climate change and are critical to managing agricultural activities in the Montreal region; both showed increasing trends. At the same time, the onset of the growing season occurred earlier as time progressed.


2017 ◽  
Vol 1 (1) ◽  
pp. 141-182
Author(s):  
Song Chen

Historians have long aspired to see beyond the rise and fall of dynasties to the longue durée and the major changes over time in Chinese society. The five empirically rich and theoretically sophisticated books discussed in this essay all share this goal. While they make distinct contributions, they have in common close attention to the relationships between the state, the elite, and local institutions between the late Tang and Qing periods. Reading them together encourages rethinking the state-and-society issues that historians have been debating for a generation. In this essay, after a brief summary of each book's major contributions, I suggest ways they help us conceptualize the long-term processes of continuity and change from the late Tang to the Qing.


Sign in / Sign up

Export Citation Format

Share Document