scholarly journals Quantitative analysis of runoff reduction in the Laohahe basin

2012 ◽  
Vol 43 (1-2) ◽  
pp. 38-47 ◽  
Author(s):  
Liliang Ren ◽  
Xiaofan Liu ◽  
Fei Yuan ◽  
Jing Xu ◽  
Wei Liu

In order to determine the reason for runoff reduction, daily natural runoff series were restored using a conceptual rainfall–runoff model. The period of 1970–1979 was regarded as a base period with little human activity; model parameters for each subcatchment within the Laohahe basin were calibrated for this period. The effects of human activity and climate change on runoff were quantified by comparing the observed runoff and the natural runoff simulated by the hydrological model. The results show that the observed annual mean runoffs in the 1980s and especially in the 2000s are smaller than those of the 1970s. Although runoff reduction in the 1980s and 2000s is mainly caused by climate change, human activity also plays an important role on the runoff reduction. Taking the 2000 as an example, human activity and climate change are responsible for 45.6 and 54.4% of the runoff reduction in Laohahe basin, respectively. The effect of human activity on runoff reduction in the Laohahe basin is increasingly intensive from the 1980s to the 2000s. Human activity in the Dianzi catchment has the most drastic effect within the Laohahe basin.

2007 ◽  
Vol 11 (2) ◽  
pp. 703-710 ◽  
Author(s):  
A. Bárdossy

Abstract. The parameters of hydrological models for catchments with few or no discharge records can be estimated using regional information. One can assume that catchments with similar characteristics show a similar hydrological behaviour and thus can be modeled using similar model parameters. Therefore a regionalisation of the hydrological model parameters on the basis of catchment characteristics is plausible. However, due to the non-uniqueness of the rainfall-runoff model parameters (equifinality), a workflow of regional parameter estimation by model calibration and a subsequent fit of a regional function is not appropriate. In this paper a different approach for the transfer of entire parameter sets from one catchment to another is discussed. Parameter sets are considered as tranferable if the corresponding model performance (defined as the Nash-Sutclife efficiency) on the donor catchment is good and the regional statistics: means and variances of annual discharges estimated from catchment properties and annual climate statistics for the recipient catchment are well reproduced by the model. The methodology is applied to a set of 16 catchments in the German part of the Rhine catchments. Results show that the parameters transfered according to the above criteria perform well on the target catchments.


2011 ◽  
Vol 42 (5) ◽  
pp. 356-371 ◽  
Author(s):  
András Bárdossy ◽  
Shailesh Kumar Singh

The parameters of hydrological models with no or short discharge records can only be estimated using regional information. We can assume that catchments with similar characteristics show a similar hydrological behaviour. A regionalization of hydrological model parameters on the basis of catchment characteristics is therefore plausible. However, due to the non-uniqueness of the rainfall/runoff model parameters (equifinality), a procedure of a regional parameter estimation by model calibration and a subsequent fit of a regional function is not appropriate. In this paper, a different procedure based on the depth function and convex combinations of model parameters is introduced. Catchment characteristics to be used for regionalization can be identified by the same procedure. Regionalization is then performed using different approaches: multiple linear regression using the deepest parameter sets and convex combinations. The assessment of the quality of the regionalized models is also discussed. An example of 28 British catchments illustrates the methodology.


2021 ◽  
Author(s):  
Milica Aleksić ◽  
Patrik Sleziak ◽  
Kamila Hlavčová

AbstractA conceptual rainfall-runoff model was used for estimating the impact of climate change on the runoff regime in the Myjava River basin. Changes in climatic characteristics for future decades were expressed by a regional climate model using the A1B emission scenario. The model was calibrated for 1981–1990, 1991–2000, 2001–2010, 2011–2019. The best set of model parameters selected from the recent calibration period was used to simulate runoff for three periods, which should reflect the level of future climate change. The results show that the runoff should increase in the winter months (December and January) and decrease in the summer months (June to August). An evaluation of the long-term mean monthly runoff for the future climate scenario indicates that the highest runoff will occur in March.


2015 ◽  
Vol 47 (2) ◽  
pp. 260-273 ◽  
Author(s):  
Kue Bum Kim ◽  
Hyun-Han Kwon ◽  
Dawei Han

Traditional hydrological modelling assumes that the catchment does not change with time. However, due to changes of climate and catchment conditions, this stationarity assumption may not be valid in the future. It is a challenge to make the hydrological model adaptive to the future climate and catchment conditions. In this study IHACRES, a conceptual rainfall–runoff model, is applied to a catchment in southwest England. Long observation data (1961–2008) are used and seasonal calibration (only the summer) has been done since there are significant seasonal rainfall patterns. Initially, the calibration is based on changing the model parameters with time by adapting the parameters using the step forward and backward selection schemes. However, in the validation, both models do not work well. The problem is that the regression with time is not reliable since the trend may not be in a monotonic linear relationship with time. Therefore, a new scheme is explored. Only one parameter is selected for adjustment while the other parameters are set as the fixed and the regression of one optimised parameter is made not only against time but climate condition. The result shows that this nonstationary model works well both in the calibration and validation periods.


2006 ◽  
Vol 3 (3) ◽  
pp. 1105-1124 ◽  
Author(s):  
A. Bárdossy

Abstract. The parameters of hydrological models for catchments with few or no discharge records can only be estimated using regional information. One can assume that catchments with similar characteristics show a similar hydrological behaviour and thus can be modeled using similar model parameters. Therefore a regionalisation of the hydrological model parameters on the basis of catchment characteristics is plausible. However, due to the non-uniqueness of the rainfall-runoff model parameters (equifinality), a workflow of regional parameter estimation by model calibration and a subsequent fit of a regional function is not appropriate. In this paper a different approach for the transfer of entire parameter sets from one catchment to another is discussed. Transferable parameter sets are identified using regional statistics: means and variances of annual discharges estimated from catchment properties and annual climate statistics.


2009 ◽  
Vol 40 (5) ◽  
pp. 433-444 ◽  
Author(s):  
David A. Post

A methodology has been derived which allows an estimate to be made of the daily streamflow at any point within the Burdekin catchment in the dry tropics of Australia. The input data requirements are daily rainfall (to drive the rainfall–runoff model) and mean average wet season rainfall, total length of streams, percent cropping and percent forest in the catchment (to regionalize the parameters of the rainfall–runoff model). The method is based on the use of a simple, lumped parameter rainfall–runoff model, IHACRES (Identification of unit Hydrographs And Component flows from Rainfall, Evaporation and Streamflow data). Of the five parameters in the model, three have been set to constants to reflect regional conditions while the other two have been related to physio-climatic attributes of the catchment under consideration. The parameter defining total catchment water yield (c) has been estimated based on the mean average wet season rainfall, while the streamflow recession time constant (τ) has been estimated based on the total length of streams, percent cropping and percent forest in the catchment. These relationships have been shown to be applicable over a range of scales from 68–130,146 km2. However, three separate relationships were required to define c in the three major physiographic regions of the Burdekin: the upper Burdekin, Bowen and Suttor/lower Burdekin. The invariance of the relationships with scale indicates that the dominant processes may be similar across a range of scales. The fact that different relationships were required for each of the three major regions indicates the geographic limitations of this regionalization approach. For most of the 24 gauged catchments within the Burdekin the regionalized rainfall–runoff models were nearly as good as or better than the rainfall–runoff models calibrated to the observed streamflow. In addition, models often performed better over the simulation period than the calibration period. This indicates that future improvements in regionalization should focus on improving the quality of input data and rainfall–runoff model conceptualization rather than on the regionalization procedure per se.


2009 ◽  
Vol 60 (3) ◽  
pp. 717-725 ◽  
Author(s):  
C. B. S. Dotto ◽  
A. Deletic ◽  
T. D. Fletcher

Uncertainty is intrinsic to all monitoring programs and all models. It cannot realistically be eliminated, but it is necessary to understand the sources of uncertainty, and their consequences on models and decisions. The aim of this paper is to evaluate uncertainty in a flow and water quality stormwater model, due to the model parameters and the availability of data for calibration and validation of the flow model. The MUSIC model, widely used in Australian stormwater practice, has been investigated. Frequentist and Bayesian methods were used for calibration and sensitivity analysis, respectively. It was found that out of 13 calibration parameters of the rainfall/runoff model, only two matter (the model results were not sensitive to the other 11). This suggests that the model can be simplified without losing its accuracy. The evaluation of the water quality models proved to be much more difficult. For the specific catchment and model tested, we argue that for rainfall/runoff, 6 months of data for calibration and 6 months of data for validation are required to produce reliable predictions. Further work is needed to make similar recommendations for modelling water quality.


Soil Research ◽  
1982 ◽  
Vol 20 (1) ◽  
pp. 15
Author(s):  
WC Boughton ◽  
FT Sefe

The rainfall input to a rainfall-runoff model was arbitrarily increased and decreased in order to determine the magnitude of corresponding changes in optimized values of the model parameters. The optimized capacities of moisture stores representing surface storage capacity of a catchment changed by average amounts of +24% and -20% as rainfall input was changed by +10% and -10%, respectively. Values of other parameters showed changes of similar magnitude, but there was no uniformity in the magnitude of induced changes from catchment to catchment. The results cast doubt on the validity of relating optimized values of model parameters to physical characteristics of catchments.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3137
Author(s):  
Santiago Zazo ◽  
José-Luis Molina ◽  
Verónica Ruiz-Ortiz ◽  
Mercedes Vélez-Nicolás ◽  
Santiago García-López

The uncertainty in traditional hydrological modeling is a challenge that has not yet been overcome. This research aimed to provide a new method called the hybrid causal–hydrological (HCH) method, which consists of the combination of traditional rainfall–runoff models with novel hydrological approaches based on artificial intelligence, called Bayesian causal modeling (BCM). This was implemented by building nine causal models for three sub-basins of the Barbate River Basin (SW Spain). The models were populated by gauging (observing) short runoff series and from long and short hydrological runoff series obtained from the Témez rainfall–runoff model (T-RRM). To enrich the data, all series were synthetically replicated using an ARMA model. Regarding the results, on the one hand differences in the dependence intensities between the long and short series were displayed in the dependence mitigation graphs (DMGs), which were attributable to the insufficient amount of data available from the hydrological records and to climate change processes. The similarities in the temporal dependence propagation (basin memory) and in the symmetry of DMGs validate the reliability of the hybrid methodology, as well as the results generated in this study. Consequently, water planning and management can be substantially improved with this approach.


Sign in / Sign up

Export Citation Format

Share Document