scholarly journals Occurrence and removal of poly/perfluoroalkyl substances (PFAS) in municipal and industrial wastewater treatment plants

Author(s):  
Sibel Barisci ◽  
Rominder Suri

Abstract The presence of poly- and perfluoroalkyl substances (PFAS) has caused serious problems for drinking water supplies especially at intake locations close to PFAS manufacturing facilities, wastewater treatment plants (WWTPs), and sites where PFAS containing firefighting foam was regularly used. Although monitoring is increasing, knowledge on PFAS occurrences particularly in municipal and industrial effluents is still relatively low. Even though the production of C8-based PFAS has been phased out, they are still being detected at many WWTPs. Emerging PFAS such as GenX and F-53B are also beginning to be reported in aquatic environments. This paper presents a broad review and discussion on the occurrence of PFAS in municipal and industrial wastewater which appear to be their main sources. Carbon adsorption and ion exchange are currently used treatment technologies for PFAS removal. However, these methods have been reported to be ineffective for the removal of short-chain PFAS. Several pioneering treatment technologies, such as electrooxidation, ultrasound, and plasma have been reported for PFAS degradation. Nevertheless, in-depth research should be performed for the applicability of emerging technologies for real-world applications. This paper examines different technologies and helps to understand the research needs to improve the development of treatment processes for PFAS in wastewater streams.

2011 ◽  
Vol 1 (1) ◽  
pp. 37-56 ◽  
Author(s):  
Sílvia C. Oliveira ◽  
Marcos von Sperling

This article analyses the performance of 166 wastewater treatment plants operating in Brazil, comprising six different treatment processes: septic tank + anaerobic filter, facultative pond, anaerobic pond + facultative pond, activated sludge, UASB reactors alone, UASB reactors followed by post-treatment. The study evaluates and compares the observed effluent quality and the removal efficiencies in terms of BOD, COD, TSS, TN, TP and FC with typical values reported in the technical literature. In view of the large performance variability observed, the existence of a relationship between design/operational parameters and treatment performance was investigated. From the results obtained, no consistent relationship between loading rates and effluent quality was found. The influence of loading rates differed from plant to plant, and the effluent quality was dictated by several combined factors related to design and operation.


2017 ◽  
Vol 4 (1) ◽  
pp. 10921-10921 ◽  
Author(s):  
Reza Shokoohi ◽  
Abdollah Dargahi ◽  
Razieh Khamutian ◽  
Yaser Vaziri

The presence of antibiotics in the environment, especially aquatic environments, is a major health and environmental concern.Wastewater treatment plants play an important role in the treatment of municipal and industrial wastewater and removal of contaminants.The aim of this study was to determine the concentration of prevalent antibiotics in municipal wastewater of Hamadan,Iran and to evaluate the removal efficiency of wastewater treatment plants. During 3 months (April, May, and June 2016), a total of 12 composite influent and effluent samples were collected from the wastewater treatment plants. Solid-phase extraction (SPE) was used for preparing the samples, which were then analyzed using high-performance liquid chromatography (HPLC) with UV detection.Based on the analysis of 6 antibiotics, three antibiotics, including amoxicillin, imipenem, and cefixime, were detected, and their concentrations were measured at 1.6, 10.7, and 5.8 ug/L, respectively. The removal efficiency of these antibiotics in wastewater treatment plants was 55.66%, 34.01%, and 24.33%, respectively. Due to the presence of examined antibiotics in the effluent and influent wastewater treatment plants, they might cause direct and indirect effects on human health and environment if proper measures are not taken by the authorities. Since the removal of these antibiotics from wastewater treatment plants is relatively poor, it is suggested to use advanced wastewater treatment plants to reduce antibiotics in effluent wastewater and decrease the adverse effects of these micropollutants.


2021 ◽  
Vol 18 ◽  
Author(s):  
Rahul Silori ◽  
Syed Mohammad Tauseef

: In recent years, pharmaceutical compounds have emerged as potential contaminants in the aquatic matrices of the environment. High production, consumption, and limited removal through conventional treatment processes/wastewater treatment plants (WWTPs) are the major causes for the occurrence of pharmaceutical compounds in wastewater and aquatic environments worldwide. A number of studies report adverse health effects and risks to aquatic life and the ecosystem because of the presence of pharmaceutical compounds in the aquatic environment. This paper provides a state-of-the-art review of the occurrence of pharmaceutical compounds in treated wastewater from various WWTPs, surface water and groundwater bodies. Additionally, this review provides comprehensive information and pointers for research in wastewater treatment and waterbodies management.


Author(s):  
Mira Petrovic ◽  
Maria Jose Lopez de Alda ◽  
Silvia Diaz-Cruz ◽  
Cristina Postigo ◽  
Jelena Radjenovic ◽  
...  

Pharmaceutically active compounds (PhACs) and drugs of abuse (DAs) are two important groups of emerging environmental contaminants that have raised an increasing interest in the scientific community. A number of studies revealed their presence in the environment. This is mainly due to the fact that some compounds are not efficiently removed during wastewater treatment processes, being able to reach surface and groundwater and subsequently, drinking waters. This paper reviews the data regarding the levels of pharmaceuticals and illicit drugs detected in wastewaters and gives an overview of their removal by conventional treatment technologies (applying activated sludge) as well as advanced treatments such as membrane bioreactor. The paper also gives an overview of bank filtration practices at managed aquifer recharge sites and discusses the potential of this approach to mitigate the contamination by PhACs and DAs.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 798
Author(s):  
Samendra P. Sherchan ◽  
Shalina Shahin ◽  
Jeenal Patel ◽  
Lauren M. Ward ◽  
Sarmila Tandukar ◽  
...  

In this study, we investigated the occurrence of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) RNA in primary influent (n = 42), secondary effluent (n = 24) and tertiary treated effluent (n = 34) collected from six wastewater treatment plants (WWTPs A–F) in Virginia (WWTP A), Florida (WWTPs B, C, and D), and Georgia (WWTPs E and F) in the United States during April–July 2020. Of the 100 wastewater samples analyzed, eight (19%) untreated wastewater samples collected from the primary influents contained SARS-CoV-2 RNA as measured by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) assays. SARS-CoV-2 RNA were detected in influent wastewater samples collected from WWTP A (Virginia), WWTPs E and F (Georgia) and WWTP D (Florida). Secondary and tertiary effluent samples were not positive for SARS-CoV-2 RNA indicating the treatment processes in these WWTPs potentially removed SARS-CoV-2 RNA during the secondary and tertiary treatment processes. However, further studies are needed to understand the log removal values (LRVs) and transmission risks of SARS-CoV-2 RNA through analyzing wastewater samples from a wider range of WWTPs.


Author(s):  
Tamara Mainetti ◽  
Marilena Palmisano ◽  
Fabio Rezzonico ◽  
Blaž Stres ◽  
Susanne Kern ◽  
...  

AbstractConjugated estrogens, such as 17β-estradiol-3-sulfate (E2-3S), can be released into aquatic environments through wastewater treatment plants (WWTP). There, they are microbiologically degraded into free estrogens, which can have harmful effects on aquatic wildlife. Here, the degradation of E2-3S in environmental samples taken upstream, downstream and at the effluent of a WWTP was assessed. Sediment and biofilm samples were enriched for E2-3S-degrading microorganisms, yielding a broad diversity of bacterial isolates, including known and novel degraders of estrogens. Since E2-3S-degrading bacteria were also isolated in the sample upstream of the WWTP, the WWTP does not influence the ability of the microbial community to degrade E2-3S.


1994 ◽  
Vol 29 (10-11) ◽  
pp. 33-38 ◽  
Author(s):  
R. Pujol ◽  
M. Hamon ◽  
X. Kandel ◽  
H. Lemmel

More than fifty wastewater treatment plants worldwide (representing several millions p.e) are equipped with up-flow biofiltration reactors (BioforR). Their range of application encompasses municipal as well as industrial wastewater. A summary of the results achieved in a large number of plants is presented, accompanied by a description of the operating parameters and the treatment limitations with regard to various pollutants (C, N, P). The separation of functions into specific reactors combined with optimized wash conditions guarantees high treatment efficiency.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Prashant Agarwal ◽  
Ritika Gupta ◽  
Neeraj Agarwal

Rapid industrialization, economic development, and population overgrowth are the major reasons responsible for the release of organic and inorganic substances into the environment, further leading to environmental pollution and contamination of water. Nowadays, it is truism that wastewater treatment has raised concern worldwide and is the need of the hour. Therefore, it is necessary to conserve sustainable energy and adopt advanced wastewater treatment technologies. Microalgae culture is gaining tremendous attention as it provides a combined benefit of treating wastewater as a growth medium and algae biomass production which can be used for several livestock purposes. Microalgae are ubiquitous and extremely diverse microorganisms which can accumulate toxic contaminants and heavy metals from wastewater, making them superior contender to become a powerful nanofactory. Furthermore, they are versatile, relatively convenient, and easy to handle, along with various other advantages such as synthesis can be performed at low temperature with greater energy efficiency, less toxicity, and low risk to the environment. Comparing with other organisms such as fungi, yeast, and bacteria, microalgae are equally important organisms in the synthesis of nanoparticles; therefore, the study of algae-mediated biosynthesis of nanometals can be taken towards a newer branch and it has been termed as phytonanotechnology. Here, an overview of recent advances in wastewater treatment processes through an amalgamation of nanoparticles and microalgae is provided.


Sign in / Sign up

Export Citation Format

Share Document